scholarly journals Characterization of Silver Nanoparticles Synthesized using Chemical Method and its Antibacterial Property

2020 ◽  
Vol 10 (6) ◽  
pp. 7257-7264

Metal nanoparticles are gaining importance nowadays in nanoscience. The nanoparticle had better physical and chemical properties compared with solid particles due to their large surface area. The silver nanoparticles are employed mostly in medical and electrical applications having outstanding conductivity and antimicrobial activity. In the present investigation, NaBH4 and ethanol were used as a reductant and stabilizer agent from silver nitrate salt as a precursor. The silver nanoparticles obtained were characterized using Fourier-transform infrared spectroscopy (FT-IR), X-Ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) to determine their morphology and size. In XRD analysis, the average particle size was found to be 18.31 nm. The TEM analysis shows crystalline morphology with a face-centered cubic structure. The antibacterial activity was tested against two bacterial cultures, namely Bacillus subtilis and Pseudomonas aeruginosa. The inhibition zones of 19mm and 17mm were observed against Bacillus subtilis and Pseudomonas aeruginosa, respectively.

2014 ◽  
Vol 938 ◽  
pp. 236-241 ◽  
Author(s):  
Pallavee Srivastava ◽  
Judith Braganca ◽  
Sutapa Roy Ramanan ◽  
Meenal Kowshik

Nanobiotechnology is a multidisciplinary branch of nanotechnology which includes fabrication of nanosized materials using biological approaches. Highly structured metallic and metal sulfide nanoparticles have been reported to be synthesized by numerous bacteria, fungi, yeasts and viruses. However, biosynthesis of nanoparticles by Haloarchaea (salt-loving archaea) of the third domain of life, Archaea, is in its nascent stages. In this study, we report the intracellular synthesis of stable, mostly spherical silver nanoparticles (SNPs) by the haloarchaeal isolateHalococcus salifodinaeBK6. The isolate adapted to silver nitrate was found to exhibit growth kinetics similar to that of cells unexposed to silver nitrate. The nitrate reductase enzyme assay and the enzyme inhibitor studies showed the involvement of NADH dependent nitrate reductase in silver tolerance, reduction, and synthesis of SNPs. UV visible spectroscopy, XRD, TEM and EDAX were used for characterization of SNPs. The XRD exhibited characteristic Bragg peaks of face centered cubic silver with crystallite domain size of 26 nm and 12 nm for SNPs synthesized in NTYE and halophilic nitrate broth, respectively. TEM analysis exhibited an average particle size of 50.3 nm and 12 nm for SNPs synthesized in NTYE and halophilic nitrate broth (HNB), respectively. The as synthesized SNPs exhibited antimicrobial activity against both Gram positive and Gram negative organisms.


2020 ◽  
Vol 9 (1) ◽  
pp. 87-96 ◽  
Author(s):  
Samaira Yasmin ◽  
Shazia Nouren ◽  
Haq Nawaz Bhatti ◽  
Dure Najaf Iqbal ◽  
Shan Iftikhar ◽  
...  

AbstractCurrently, the green route for synthesis of silver nanoparticles (Ag NPs) using plants leaf extract is an emerging research area in nanotechnology. The present study was explored for synthesis, characterization and catalytic application of Ag NPs using Diospyros lotus fresh leaf extracts. Factors affecting the synthesis were optimized and optimum conditions were pH of 8.6, silver nitrate (AgNO3) concentration of 1.5 mM and 10 mL leaf extract. Formation of Ag NPs was observed by change in color of reaction mixture from pale yellow to reddish brown. The synthesized Ag NPs were characterized using UV-Vis spectrophotometer, EDX, XRD and SEM analyses. UV-Vis spectrophotometer showed maximum absorbance peak in the range of 407 nm at different time intervals indicating formation of Ag NPs. SEM and XRD analysis confirmed face centered cubic structure and crystalline nature of biologically synthesized Ag NPs with average particle size of 27 nm. The purity of synthesized Ag NPs was revealed by EDX. Finally, photo catalytic activity (PCA) of Ag NPs was studied and 72.91% decolorization of industrial waste water was obtained at 54 h. Some important parameters like pH, turbidity, conductance; TSS, TDS, sulphide, sulphates, etc. were also monitored before and after treatment with Ag NPs.


2019 ◽  
Vol 967 ◽  
pp. 145-149
Author(s):  
Diana Eka Pratiwi ◽  
Sumiati Side ◽  
Nur Aifah Tun Nisa

In recent years, the development of efficient green chemistry methods for synthesis of metal nanoparticles has become a major focus of researchers. One of the most considered methods is production of metal nanoparticles using plants. In this study silver nanoparticles (AgNPs) were rapidly synthesized by reacting silver ions with Moringa oleiferaL. leaf extract. The reaction process was simple and convenient to handle, and was monitored using ultraviolet-visible (UV-Vis) spectrophotometer. The crystalline phase of the AgNPs was determined from X-Ray Diffraction (XRD) patterns. The UV-vis spectra gave surface plasmon resonance for synthesized AgNPs at 465-473 nm. The XRD analysis showed that AgNPs are crystalline in nature and have face centered-cubic geometry with average particle size of 32 nm.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 473
Author(s):  
Prabu Kumar Seetharaman ◽  
Rajkuberan Chandrasekaran ◽  
Rajiv Periakaruppan ◽  
Sathishkumar Gnanasekar ◽  
Sivaramakrishnan Sivaperumal ◽  
...  

To develop a benign nanomaterial from biogenic sources, we have attempted to formulate and fabricate silver nanoparticles synthesized from the culture filtrate of an endophytic fungus Penicillium oxalicum strain LA-1 (PoAgNPs). The synthesized PoAgNPs were exclusively characterized through UV–vis absorption spectroscopy, Fourier Transform Infra-Red spectroscopy (FT-IR), X-ray powder diffraction (XRD), and Transmission Electron Microscopy (TEM) with energy dispersive X-ray spectroscopy (EDX). The synthesized nanoparticles showed strong absorbance around 430 nm with surface plasmon resonance (SPR) and exhibited a face-centered cubic crystalline nature in XRD analysis. Proteins presented in the culture filtrate acted as reducing, capping, and stabilization agents to form PoAgNPs. TEM analysis revealed the generation of polydispersed spherical PoAgNPs with an average size of 52.26 nm. The PoAgNPs showed excellent antibacterial activity against bacterial pathogens. The PoAgNPs induced a dose-dependent cytotoxic activity against human adenocarcinoma breast cancer cell lines (MDA-MB-231), and apoptotic morphological changes were observed by dual staining. Additionally, PoAgNPs demonstrated better larvicidal activity against the larvae of Culex quinquefasciatus. Moreover, the hemolytic test indicated that the as-synthesized PoAgNPs are a safe and biocompatible nanomaterial with versatile bio-applications.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Indrawati Patabang ◽  
Syahruddin Kasim ◽  
Paulina Taba

Silver nanoparticles have been synthesized using kluwak leaf extract (Pangium edule Reinw) as bioreductor and antioxidant activity assay. The nanoparticles formed were monitored by observing UV-Vis absorption and characterized by using FTIR, PSA, XRD and SEM instruments. The result of functional group characterization with FTIR show that the functional groups OH, C = O, C-O and CH2 act as Ag+ reducing agent. The size of silver nanoparticles was determined by using Particle Size Analyzer (PSA) and the result show average particle size distribution of 93.2 nm. Morphology of AgNp were observed by Scanning Electron Microscope (SEM) and X-Ray Difraction (XRD) analysis show result of 51,78 nm. The antioxidant activity was shown by in kluwak leaf extract and silver nanoparticles with IC50 values respectively 831,33 ppm dan 1493,09 ppm.


2018 ◽  
Vol 150 ◽  
pp. 02003
Author(s):  
Tengku Anisa Tengku Sallehudin ◽  
Mazrul Nizam Abu Seman ◽  
Syed Mohd Saufi Tuan Chik

In this study, silver nanoparticles (AgNPs) were synthesized from tea leaves extract and its antimicrobial properties was tested on Escherichia coli (E. coli) using agar well method. The synthesized nanoparticles were characterized by using UV-vis spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD). The result from XRD analysis shows that the synthesized AgNPs are a face-centered cubic (fcc) structure with an average particle size of 28±15 nm AgNPs which confirmed by TEM. The synthesized AgNPs were then used in the preparation of thin film composite NF membrane via interfacial polymerization method. Separation performance of the produced membrane was evaluated in term of membrane permeability and solute rejection (vitamin B12, NaCl and Na2SO4 solutions). Based on the structural parameters (pore size, rp and Δx/Ak) values obtained from vitamin B12 test, all membranes can be considered as tight NF membranes. From the salts rejection test, membranes with the addition of AgNPs exhibited higher salt rejection compared to the neat membranes.


Author(s):  
SNEHA THAKUR ◽  
KRISHNA MOHAN G

Objective: The main objective of the research work is to evaluate the antityrosinase potential of onion DNA silver nanoparticles (AgNPs). Methods: The onions were procured from the local market and DNA was extracted from onions using detergent and methylated spirit. The isolated DNA was selected for synthesis of AgNPs which acts as capping and reducing agent. About 10 ml of the DNA extract was added to 90 ml of 0.1 N silver nitrate solution. After 24 h incubation, the solution turned dark brown, which indicates the formation of AgNPs. The synthesized DNA AgNPs were characterized by ultraviolet-visible, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) studies. Results: The results revealed that the particles were uniform in shape with face-centered cubic structure. The particles are 153±20.4 nm in size and were no signs of agglomeration measured by DLS studies. The FTIR spectroscopy revealed B form of DNA along with strong N-H stretching, C=N stretching, and also asymmetric vibrations of phosphate groups characteristic for DNA molecule. The XRD studies revealed the face-centered cubic structure. SEM studies revealed the spherical structure with average particle size of 150±0.1 nm for single DNA nanoparticles. The onion DNA AgNPs were further investigated for its antityrosinase activity against the standard kojic acid and were to have anticancer potential nearer to the standard. Conclusion: From the results, it is evident that the synthesized onion DNA AgNPs have antityrosinase potential and can be further investigated for in vivo anticancer potential in future.


2012 ◽  
Vol 585 ◽  
pp. 174-178 ◽  
Author(s):  
S.G. Gaurkhede ◽  
M.M. Khandpekar ◽  
S.P. Pati ◽  
A.T. Singh

Abstract. LaF3 nanocrystals doped with lanthanides like Ce3+, Pr3+ and Nd3+ have been prepared using microwave technique. These synthesized crystals have been characterized by X-ray powder diffraction. Well dispersed, elongated, nanorods of hexagonal geometry (approximately 20nm in size) have been found in TEM analysis. The average particle size estimated from XRD analysis is about 20 nm and is in close agreement with the TEM results. Four characteristic peaks one at 3434 cm-1 (broad) and other at 2924, 2853, 1632 cm-1(sharp) have been observed in the FTIR spectra. Intense Blue colour (458 nm) emission has been recorded when crystals are excited with photons of wavelength 254 nm. Non Linear Optical (NLO) properties of the synthesized nanocrystals have been studied. It has been found that second harmonic generation (SHG) efficiency of the prepared samples containing rare earth elements is less than pure Potassium dihydrogen phosphate (KDP) crystals.


2020 ◽  
Vol 21 (4) ◽  
pp. 177
Author(s):  
Siti Suhartati ◽  
Iwan Syahjoko Saputra ◽  
Dwinna Rahmi ◽  
Yoki Yulizar ◽  
Sudirman Sudirman

BIOREDUCTION AND CHARACTERIZATION OF SILVER NANOPARTICLES FROM OIL PALM EMPTY FRUIT BUNCH (OPEFB). The synthesis of silver nanoparticles was successfully carried out by extracting oil palm empty fruit bunch. The precursor used was silver nitrate (AgNO3) with a concentration of 9x10-4 M and 5 wt% of the oil palm empty fruit bunch extract. OPEFB acted as a capping agent in the synthesis of silver nanoparticles. The bioreduction method Ag+ to Ag0 produced a silver nanoparticle colloid in brown color. The results of the UV-Vis spectrophotometer showed the silver nanoparticles colloids spectrum at a wavelength of 420 nm with an absorbance value of 0.5. FTIR shows the reduction and shift of absorption peak in the hydroxyl functional group (-OH) at wavenumbers of 3323 cm-1 and the presence of absorption peaks at 560 cm-1. While, XRD pattern showed the specific crystallinity peaks of silver nanoparticles at 2θ: 33.24°; 39.98°; 61.23°; dan 79.13° respectively with the face-centered cubic crystal structure (FCC) and crystallite size of 15 nm. PSA analysis showed two specific peaks with an average size distribution silver nanoparticles of 43.5 nm and a PDI value of 0.4. Analysis of TEM shows the average particle size of 20 nm with a spherical particle shape.


Author(s):  
Pham Thi Thu Ha ◽  
Vu Xuan Hoa ◽  
Trinh Dinh Kha ◽  
Nguyen Dac Dien ◽  
Luong Duy Thanh ◽  
...  

In this study, the stable silver nanoparticles (AgNPs) were synthesized by reducing silver nitrate (AgNO3) using trisodium citrate (TSC). The product was characterized by Ultraviolet-Visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). UV-Vis spectrum showed a peak around 420 nm. TEM analysis revealed the homogeneity in the size of AgNPs (35-45 nm), well-dispersed quasi-spherical in water. The prepared AgNPs exhibited high antibacterial activity against Bacillus subtilis and Pseudomonas aeruginosa bacteria. The average zones of inhibition were 20 mm and 17 mm for Pseudomonas aeruginosa and Bacillus subtilis bacteria, respectively. The inhibition zone of AgNPs was also compared to the reference antibiotics drugs such as ampicillin and natamycin. This research exhibits an efficient and eco-friendly synthesis of silver nanoparticles with potent antimicrobial and antibacterial performance.


Sign in / Sign up

Export Citation Format

Share Document