scholarly journals In silico Investigation of Tridax procumbens Phyto-Constituents Against SARS-CoV-2 Infection

2021 ◽  
Vol 11 (4) ◽  
pp. 12120-12148

Tridax procumbens is a popular medicinal plant traditionally used for wound healing and bronchial catarrh. In the current study, in silico computational analysis of 22 active phytoconstituents of T. procumbens was performed against SARS-CoV-2. Molecular Docking studies against six key targets of SARS-CoV-2 including PDB ID: 6LU7, a main protease 3CLpro/Mpro; PDB ID: 6NUR, SARS-Coronavirus NSP12 polymerase bound to NSP7 and NSP8 co-factors, PDB ID: 6m71, SARS-Cov-2 RNA-dependent RNA polymerase (RdRp), PDB ID: 6CS2, SARS Spike Glycoprotein - human ACE2 complex a Stabilized variant; PDB ID: 6VXX, spike glycoprotein of SARS-CoV-2 and its receptor Angiotensin-converting enzyme-2 (PDB ID: 1R42) were accomplished. Additionally, in silico prediction studies using pharmacokinetics (ADMET) properties and the protection profile to identify the paramount drug candidates were also done using online SwissADME and pkCSM web servers. Comprehensive docking analyses confirmed that out of 22 screened phytoconstituents, 6 compounds: Bergenin, beta-Sitosterol, Centaurein, Procumbentin, Luteolin, and Puerarin showed a high binding affinity with studied SARS-CoV-2 target proteins. Pharmacokinetics prediction studies further verified that all selected phytoconstituents were safe with good quality ADMET properties and lacking carcinogenic and tumorigenic properties. Thus, these selected drugs can effectively control COVID-19 and improve immunity, which can be confirmed by further studies.

Author(s):  
S. Sarithamol ◽  
Divya V. ◽  
Sunitha V. R. ◽  
Suchitra Surendran ◽  
V. L. Pushpa ◽  
...  

Objective: Interleukin 4, an important cytokine, has the major role in the immunomodulatory responses associated with asthma. The present study focused on the involvement of single nucleotide polymorphism variation (SNP) of interleukin 4 (IL4) in the development of disease, asthma and designing small molecules for the inhibition of IL4 through in silico strategy.Methods: Identification of disease causing SNP will be a wise approach towards the phenotype specific treatment. A human origin deleterious no synonymous SNP of IL4 were found out in the chromosome region 5q31-q33 (rs199929962) (T/C). Proteins of the corresponding nucleotide variation were identified and were subjected to characterization studies for selecting the most appropriate one for further mutational analysis and molecular docking studies.Results: Influence of microbes on SNP variation of IL4 gene leading to asthma was found to be insignificant by metagenomic studies. Gene responsive drugs were identified through environmental factor analysis. The drug candidates including corticosteroids were subjected to protein interaction studies by in silico means. The pharmacophoric feature derived from drug receptor interaction was utilized for virtual screening on a dataset of anti-inflammatory phytomolecules. The scaffolds of ellagic acid and quercetin were identified as potential nonsteroidal entities which can shield the asthmatic activities.Conclusion: Developing small molecules using these scaffolds taking interleukin 4 as a target will be an adequate solution for steroid resistant asthma.


Author(s):  
Acharya Balkrishna ◽  
Pallavi Thakur ◽  
Shivam Singh ◽  
Swami Dev ◽  
Viney Jain ◽  
...  

A novel respiratory pathogen, SARS-CoV-2 has recently received worldwide attention and has been declared a public health emergency of global concern. Entry of SARS-CoV-2 is mediated through the viral spike glycoprotein (S2). Afterwards, the virus gets hold of the host cell machinery by employing the use of viral main protease 3CLpro and NSP15 endoribonuclease. In the present in silico study, active site mapping of the viral virulence factors was rendered by means of DoG Site Scorer. The possibility of repurposing of 2-deoxy-D-glucose (2-DG), a radio-chemo-modifier drug used for optimizing cancer therapy, and one of its derivative (1, 3, 4, 6-Tetra-O-acetyl-2-deoxy-D-glucopyranose, has been investigated by conducting ligand-receptor docking. Binding pose depictions of ligands and viral receptors were assessed by employing molecular dynamics analysis. Molinspiration and Toxicity Estimation Software tools were used to assess the drug likeliness, bioactivity indices and ADMETox values. 2-DG can dock efficiently with viral main protease 3CLpro as well as NSP15 endoribonuclease, thus efficiently inactivating these viral receptors leading to incapacitation of the SARS-CoV-2 virus. Such incapacitation was possible by means of formation of a hydrogen bond between 2-DG and proline residues of viral protease. The 2-DG derivative formed a hydrogen bond with the glutamine amino acid residues of the viral spike glycoprotein. The present in silico study supports the potential benefits of using 2-DG and its glucopyranose derivative as repurposed drugs/prodrugs for mitigating the novel COVID-19 infection. Since both these moieties present no signs of serious toxicity, further empirical studies on model systems and human clinical trials to ascertain effective dose-response are warranted and should be urgently initiated.


2020 ◽  
Author(s):  
Dharmendra Kumar Maurya

Abstract Corona Virus Disease 2019 (COVID-19) caused by a novel coronavirus emerged from Wuhan, China in December 2019. It has spread to more than 205 countries and become pandemic now. Currently, there are no FDA approved drugs or vaccines available and hence several studies are going on in search of suitable drug that can target viral proteins or host receptor for the prevention and management of COVID-19. The search for plant-based anti-viral agents against the SARS-CoV-2 is promising because several of plants have been shown to possess anti-viral activities against different viruses. Here, we used molecular docking approach to explore the use of Indian Ayurvedic herbs, Yashtimadhu in prevention and management of COVID-19. In the present study we have evaluated the effectiveness of phytochemicals found in Yashtimadhu against Main Protease (Mpro), Spike (S) protein and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 as well as human angiotensin converting enzyme 2 (ACE2) receptor and furin protease. Apart from this, we have also performed in-silico drug-likeness and predicted pharmacokinetics of the selected phytochemicals found in the Yashtimadhu. Our study shows that several phytochemicals found in this plant have potential to bind with important proteins of SARS-CoV-2 which are essential for viral infection and replication. Overall our study provides scientific basis in terms of binding of active ingredients present in Yashtimadhu with SARS-CoV-2 target proteins. Our docking studies reveal that Yashtimadhu may inhibit the viral severity by interfering with viral entry as well as its multiplication in the infected persons. Thus Yashtimadhu may be helpful in the prevention and management of the COVID-19.


2021 ◽  
Vol 12 (2) ◽  
pp. 1385-1396

Currently, the entire globe is under the deadliest pandemic of Covid-19 caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). At present, no specific treatment is available to combat COVID-19 infection. Euphorbia hirta (Euphorbiaceae) have been reported for a variety of biological activities, including antiviral. The present investigation aimed to identify potential phytoconstituents of the plant E. hirta from the category flavonoids and coumarins against the SARS-CoV-2 using in silico approach. The molecular docking studies were performed using two different targets of SARS-CoV-2, namely Main protease (Mpro; PDB ID: 6M2N) and RNA-dependent RNA polymerase (RdRp; PDB ID: 7BW4). Based on the molecular docking study in comparison with standard drug, four compounds, namely Euphrobianin, Quercetin, 3-o-alpha-rhamnoside, Isoquercitrin, and rutin, were screened against the target Mpro. Three phytoconstituents, euphorbianin, myricetin, and rutin, were screened against the target RdRp. In the in silico toxicity studies of screened phytoconstituents, except myrectin all were predicted safe. Results of euphorbianin and rutin were found more interesting as both compounds had high binding affinity against both targets. Finally, we want to conclude that euphrobianin, quercetin 3-o-alpha-rhamnoside, isoquercitrin, and rutin could be further explored rapidly as they may have the potential to fight against COVID-19.


2021 ◽  
Vol 72 (2) ◽  
pp. 159-169
Author(s):  
OLUWAKEMI EBENEZER ◽  
MICHAEL SHAPI

Abstract Some compounds reported as active against SARS CoV were selected, and docking studies were performed using the main protease of SARS CoV-2 as the receptor. The docked complex analysis shows that the ligands selectively bind with the target residues and binding affinity of amentoflavone (–10.1 kcal mol–1), isotheaflavin-3’-gallate (–9.8 kcal mol–1), tomentin A and D (–8.0 and –8.8 kcal mol–1), theaflavin-3,3’-digallate (–8.6 kcal mol–1), papyriflavonol A (–8.4 kcal mol–1), iguesterin (–8.0 kcal mol–1) and savinin (–8.3 kcal mol–1) were ranked above the binding affinity of the reference, co-crystal ligand, ML188, a furan-2-carboxamide-based compound. To pinpoint the drug-like compound among the top-ranked compounds, the Lipinski’s rule of five and pharmacokinetic properties of all the selected compounds were evaluated. The results detailed that savinin exhibits high gastrointestinal absorption and can penetrate through the blood-brain barrier. Also, modifying these natural scaffolds with excellent binding affinity may lead to discovering of anti-SARS CoV agents with promising safety profiles.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 482-490
Author(s):  
Kalirajan Rajagopal ◽  
Potlapati Varakumar ◽  
Baliwada Aparna ◽  
Vulsi Bodhya Sri ◽  
Gowramma Byran ◽  
...  

Coronavirus Disease 2019 (COVID-19), a life-threatening viral disease affected first in Wuhan, China, and quickly spread to more than 200 countries in the world in the year 2020. So many scientists are trying to discover novel drugs and vaccines for coronavirus and treatment for COVID-19. In the present article, in-silico studies have been performed to explore the binding modes of Thiazine substituted 9-anilinoacridines (1a-z) against SARS CoV 2 main protease (PDB id - 5R82) targeting the coronavirus using Schrodinger suit 2019-4. The molecular docking studies are performed by Glide module, in-silico ADMET screening was performed by Qik prop module, and the binding free energy of ligands was calculated using PRIME MM-GB/SA module of Schrodinger suite 2019-4, Maestro 21.2 version. From the in-silico results, Thiazine substituted 9-anilinoacridines like 1m, 1j, 1s and 1b are significantly active against SARS CoV 2 main protease with Glide score more than -5.4 when compared with the currently recommended drug for COVID19, Hydroxychloroquine (G score -5.47). The docking results of the Thiazine substituted 9-anilinoacridines exhibited similar mode of interactions with COVID19 and the residues GLN19, THR24, THR25, THR26, LEU27, HIE41, SER46, MET49, ASN142, GLN143, HIE164, MET165, ASP187, ARG188 and GLN189, play a crucial role in binding with ligands.


2020 ◽  
Vol 17 (12) ◽  
pp. 1552-1565
Author(s):  
Sonia Verma ◽  
Akashdeep Singh Pathania ◽  
Somesh Baranwal ◽  
Pradeep Kumar

Background: Cancer is a leading cause of deaths worldwide, accounting for 9.6 million deaths in 2018. According to the WHO, the most common causes of cancer deaths are lung, colorectal, stomach liver and breast cancer. Introduction: PARP-1 has a crucial role in cell proliferation, survival and death due to its role in the regulation of multiple biological processes. Quinazolinone and its derivatives represent a large class of biologically active compounds that exhibit a broad spectrum of biological activities such as anti-HIV, anticancer, antifungal, antibacterial, anticonvulsant, anti-inflammatory, antidepressant, antimalarial, antioxidant and antileishmanial activities. Methods: In this study, we have synthesized quinazolinone derivatives by reaction of 2- aminobenzamide and substituted benzaldehydes. The synthesized compounds were also screened in silico for their PARP-1 binding affinities by molecular docking studies using Schrodinger 2016 software. In silico ADME studies were also performed for the synthesized compounds by using QikProp tool of Schrodinger software. Results: Results of in silico studies indicated that quinazolinone derivatives exhibited a good affinity towards the active site of PARP-1. Out of all synthesized compounds, SVA-11 exhibited a maximum dock score (-10.421). Results of ADME studies indicated the suitability of synthesized compounds as drug candidates. Conclusion: The synthesized compounds showed better docking scores than reference drug valiparib. Furthermore, they exhibited favorable ADME profile. Therefore, they may serve as lead compounds in the discovery of PARP-1 inhibitors.


2021 ◽  
Author(s):  
Norberto Monteiro ◽  
Vitória Monteiro ◽  
Lorena Lima ◽  
Anna Karolline ◽  
Richele Machado

Abstract The pandemic caused by the new coronavirus has resulted in a global health emergency and has prompted an urgent need for new treatment strategies. No target-specific drugs are currently available for SARS-CoV-2, but new drug candidates targeting the viral replication cycle are being explored. A prime target of drug-discovery efforts is the SARS-CoV-2 main protease (Mpro). In this work, we identified a potential inhibitor for SARS-CoV-2 main protease using in silico methodologies. Molecular docking and molecular dynamics studies were carried out to ascertain the inhibitory action of α and β anomers of Punicalagin from fruit peel of Punica granatum against the Mpro protease. The molecular dynamics results revealed that the β-anomeric configuration of punicalagin allowed access to more hydrogen bonds and hydrophobic interaction leading to higher selectivity and specificity of β-anomer than α-anomer. Therefore, the β-anomer of Punicalagin could act as potential inhibitor against the main protease of SARS-CoV-2 and may act as a potential drug candidate.


2020 ◽  
Author(s):  
Tanuja Joshi ◽  
Priyanka Sharma ◽  
Tushar Joshi ◽  
Hemlata Pundir ◽  
Shalini Mathpal ◽  
...  

Abstract Outbreak of SARS-CoV-2 and massing death caused by it all over world has imposed great concern on scientific community to develop potential drugs to combat with Coronaviruas disease 19 ( COVID-19 ). In this regard, lichen metabolites may offer a vast reservoir for discovery of anti-viral drug candidates. Therefore to find novel compounds against COVID-19, we created a library of 412 lichen compounds and subjected to virtual screening against two molecular targets; SARS-CoV-2 target- Main protease (Mpro) and host cell target- Angiotensin-converting enzyme 2 (ACE2). All the ligands were virtually screened, and 80 compounds were found to have better docking score with both the targets. These compounds were assessed for druglikeness analysis where 27 compounds were found to fit well for redocking studies. The results of redocking by X-Score showed that 7 out of 27 compounds were found to have high affinities with Mpro as well ACE2 which reflect that these compounds can function as dual inhibitors. Molecular docking, druglikeness, X-Score and toxicity analysis resulting seven novel lichen compounds (Orcinyllecanorate, Siphulin, Fremontol, Gyrophoric acid, Rhizocarpic acid, Ovoic acid, and Umbilicaric acid) with Mpro and ACE2 multi-target activities and they can be used as hit compounds to develop potential antiviral agents against SARS-CoV-2. These lichen compounds may be a suitable candidate for further experimental analysis.


Sign in / Sign up

Export Citation Format

Share Document