scholarly journals Liposomes Loaded with Activatable Disulfide Bridged Photosensitizer: Towards Targeted and Effective Photodynamic Therapy on Breast Cancer Cells

2021 ◽  
Vol 12 (1) ◽  
pp. 304-325

The motivation of the current study is to develop a strategy providing targeted and effective photodynamic therapy (PDT) on breast cancer cells by eliminating the limitations of PDT. For this purpose, a disulfide bridged phthalocyanine with favorable wavelength absorbance that is activatable in cancer cells was synthesized and encapsulated in liposome nanoparticles. The synthesized molecule was characterized using Fourier transform-infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, Matrix-Assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) Mass Spectrometry, Ultraviolet-visible (UV-Vis) spectrophotometry, and particle size analyzer; and the nano-formulation was tested on MCF-7 breast cancer cell line using MTT assay, fluorescence microscopy, and flow cytometry. The results have illustrated that the synthesized disulfide bridged phthalocyanine has a therapeutically active wavelength absorbance value (685 nm), the liposome nanoparticles with the favorable characteristics (average size of 167.6 nm and polydispersity index (PDI) of 0.108) containing the synthesized disulfide bridged phthalocyanine have low dark toxicity, and significant light toxicity (P < 0.001 vs. dark toxicity) characterized with significant apoptosis (p < 0.05 vs. control group). Thus, for further investigations, these results suggest the great potential of the nano-formulation towards targeted and effective PDT on breast cancer cells.

2020 ◽  
Vol 19 ◽  
pp. 153303382097967
Author(s):  
Jin Zhang ◽  
Nan Shao ◽  
Xiaoyu Yang ◽  
Chuanbo Xie ◽  
Yawei Shi ◽  
...  

The microRNA-200 (miR-200) family has been reported to be vital for the inhibition of epithelial-to-mesenchymal transition (EMT) in tumor cells. The miR-200 family represents a complex multi-factorial regulatory network which has not been well described in breast cancer. This study aimed to clarify the underlying regulatory association between IL-8 and miR-200 family in the process of EMT in breast cancer cell. In estrogen-receptor (ER) positive breast cancer cell line MCF-7, IL-8 overexpression cells were performed by lentivirus transfection as endogenous regulation with additional exogenous IL-8 stimulation. Transient overexpressions of miR-200 family were performed after endogenous or exogenous IL-8 overexpression in MCF-7 cells. IL-8 knockdown cells were constructed via siRNA and shRNA transfection in triple negative breast cancer cell line MDA-MB-231. N-cadherin, vimentin and ZEB2 were down-regulated and E-cadherin was up-regulated in IL-8 knockdown group compared with control group. On the other hand, N-cadherin, vimentin and ZEB2 were up-regulated and E-cadherin was down-regulated in IL-8 overexpression group compared with control group. This indicated IL-8 promotes EMT in breast cancer cells. Transwell assay showed that IL-8 increased the migration and invasiveness of tumor cells. Furthermore, we performed transient overexpression of miR-200 family after endogenous or exogenous IL-8 overexpression in MCF-7 cells, which showed that the miR-200 family could inhibit EMT induced by IL-8. IL-8 promoted EMT via downregulation of miR-200 family expression in breast cancer cells and increases tumor cell migration and invasion.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1468
Author(s):  
Sumeyye Cavdarli ◽  
Larissa Schröter ◽  
Malena Albers ◽  
Anna-Maria Baumann ◽  
Dorothée Vicogne ◽  
...  

The O-acetylated form of GD2, almost exclusively expressed in cancerous tissues, is considered to be a promising therapeutic target for neuroectoderm-derived tumors, especially for breast cancer. Our recent data have shown that 9-O-acetylated GD2 (9-OAcGD2) is the major O-acetylated ganglioside species in breast cancer cells. In 2015, Baumann et al. proposed that Cas 1 domain containing 1 (CASD1), which is the only known human sialyl-O-acetyltransferase, plays a role in GD3 O-acetylation. However, the mechanisms of ganglioside O-acetylation remain poorly understood. The aim of this study was to determine the involvement of CASD1 in GD2 O-acetylation in breast cancer. The role of CASD1 in OAcGD2 synthesis was first demonstrated using wild type CHO and CHOΔCasd1 cells as cellular models. Overexpression using plasmid transfection and siRNA strategies was used to modulate CASD1 expression in SUM159PT breast cancer cell line. Our results showed that OAcGD2 expression was reduced in SUM159PT that was transiently depleted for CASD1 expression. Additionally, OAcGD2 expression was increased in SUM159PT cells transiently overexpressing CASD1. The modulation of CASD1 expression using transient transfection strategies provided interesting insights into the role of CASD1 in OAcGD2 and OAcGD3 biosynthesis, and it highlights the importance of further studies on O-acetylation mechanisms.


Author(s):  
Erem Ahmetali ◽  
Pinar Sen ◽  
N. Ceren Süer ◽  
Tebello Nyokong ◽  
Tarik Eren ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 326-332
Author(s):  
Le Ma ◽  
Zhenyu Liu ◽  
Zhimin Fan

Breast cancer is one of the most prevailing cancers in females, while the cancerous heterogeneity hinders its early diagnosis and subsequent therapy. miR-143-3p is a critical mediator in malignancy development and tumorigenesis as a tumor suppressor. Its role in various tumor entities has been investigated, such as colon cancer and breast cancer. Using MCF-7 breast cancer cell model, we planned to explore the underlying mechanisms of miR-143/KLF-5 axis in retarding breast cancer cells growth. Bioinformatics analysis searched the target KLF5 of miR-143, and the miR-143-targeted mimic and inhibitor were employed to detect the changes of KLF5. After transfection of mimic miR-143, the CCK-8 reagent assessed cell proliferation. Based on optimal stimulation time, miR-143 stimulation model was established, followed by determining expression of KLF5, EGFR and PCNA via western blot and qPCR. Eventually, siRNA-KLF5 was applied to silencing KLF5 level to evaluate its role in MCF-7 cells. The transcription and translation levels of KLF5 were diminished in miR-143-mimic transfected MCF-7 cells, while enhanced in miR-143-inhibitor transfected MCF-7 cells. When MCF-7 cells were transfected with miR-143-mimic at different time points, 48 hours was found to be the optimal transfection time, with reduced transcription and translation levels of KLF5, EGFR and PCNA. The transcription and translation levels of PNCA and EGFR were declined after silencing KLF5 by siRNA. miR-143/KLF5 axis could retard the proliferation of MCF-7 breast cancer cells.


2020 ◽  
Vol 9 ◽  
pp. 1812
Author(s):  
Solmaz Rahmani Barouji ◽  
Arman Shahabi ◽  
Mohammadali Torbati ◽  
Seyyed Mohammad Bagher Fazljou ◽  
Ahmad Yari Khosroushahi

Background: Mummy (Iranian pure shilajit) is a remedy with possessing anti-inflammatory, antioxidant and anticancer activities. This study aimed to examine mummy effects on epithelial-mesenchymal transition (EMT) and invasiveness of MCF-7 and MDA-MB-231 breast cancer (BC) cell lines with underlying its mechanism. Materials and Methods: The dose-dependent inhibitory effect of the mummy on cell proliferation in vitro was determined using the MTT assay.  Flow cytometry and 4’,6-diamidino-2-phenylindole dihydrochloride staining were respectively used for quantitative and qualitative analysis of cellular apoptosis, and gene expression analysis was conducted using real-time PCR. Results: MDA-MB-231 showed more sensitivity than the MCF-7 cell line to the anticancer activity of mummy, while mummy did not exhibit significant cell cytotoxicity against human normal cells (MCF-10A). The gene expression profile demonstrated a significant decrease in TGF-β1, TGF-βR1, TWIST1, NOTCH1, CTNNB1, SRC along with an increase in E-cadherin mRNA levels in mummy treated cells compared to the untreated control group (P≤0.05). Conclusion: Mummy triggers inhibition of EMT and metastasis in breast cancer cells mainly through the downregulation of TGFβ1 activity, and more studies required to find its specific anticancer activity with details. [GMJ.2020;9:e1812]


2019 ◽  
Vol 55 (81) ◽  
pp. 12231-12234 ◽  
Author(s):  
Limiao Shi ◽  
Christophe Nguyen ◽  
Morgane Daurat ◽  
Abdelhamid Chiheb Dhieb ◽  
Wajda Smirani ◽  
...  

Three new biocompatible porphyrin-based oxygen photosensitisers were tested in vitro on breast cancer cells via 2P-PDT: one of them, 66 times more active than H2TPP, gave quite promising results for theranostic applications.


2019 ◽  
Vol 2 (12) ◽  
pp. 5976-5984 ◽  
Author(s):  
Xiuqin Chen ◽  
Qiumei Guo ◽  
Shiqing Dong ◽  
Jianling Chen ◽  
Shusen Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document