scholarly journals Synthesis and Characterization of Hydroxyapatite Derived from Milkfish Bone by Simple Heat Treatments

2021 ◽  
Vol 12 (2) ◽  
pp. 2440-2449

The present study aimed to synthesize hydroxyapatite (HAp) from milkfish (Chanos chanos) bone by simple heat treatments ranging from 600 to 800 °C. The yield and color of synthesized powders before and after heat treatment were analyzed. The synthesized powders were characterized using Fourier transform infrared spectroscopy (FTIR) to identify the functional groups and X-ray diffraction (XRD) was employed to identify phase and crystallinity properties. This study found that the yield percentages were found to be approximately 50%. The FTIR characteristics exhibited the phosphate and carbonate groups at high temperatures (≥600 °C). In general, this study confirmed that the well-crystallized HAp can be synthesized by thermal treatment at a temperature of 160 °C for 48 h.

2019 ◽  
Vol >15 (5) ◽  
pp. 512-524 ◽  
Author(s):  
Alexandros K. Nikolaidis ◽  
Elisabeth A. Koulaouzidou ◽  
Dimitris S. Achilias

Background: Nanoclays incorporated in dental resins have been previously investigated. However, limited reports are associated with nanoclays that exhibit high functionality. Objective: The aim of this study was the targeted synthesis and characterization of organomodified nanoclays with methacrylic groups suitable for incorporation in dental nanocomposite resins. Methods: Quaternary ammonium methacrylates were synthesized and characterized by means of proton nuclear magnetic resonance and Fourier-transform infrared spectroscopy. Consequently, they were inserted into the interlayer space of nanoclay through a cation exchange reaction, while silane was also used for simultaneous surface modification. The produced organomodified nanoclays were characterized by means of X-ray diffraction, Fourier-transform infrared spectroscopy and thermogravimetric analysis. Results: Fourier-transform infrared spectra confirmed the successful synthesis of the quaternary ammonium methacrylates. X-ray diffraction analysis showed that organoclays exhibited higher d001- values (up to 1.78 nm) compared to raw nanoclay (1.37 nm), indicating an accomplished intercalation in each case. X-ray diffraction spectra mainly disclosed the presence of methacrylic functional groups in all nanoclays. Thermogravimetric analysis curves verified the different thermal stability of organoclays due to the diversity of their organic modifiers. Conclusion: The experimental results showed that nanoclay was successfully modified with ammonium methacrylates and silane. Τhe combination of X-ray diffraction and thermogravimetric analysis data revealed a high degree of intercalation and methacrylated organic loading as well. These phenomena may favor a good dispersion and high polymerization degree of nanoclays with dental resin monomers, rendering them potentially useful materials for the development of advanced dental nanocomposites resins.


2021 ◽  
Vol 234 ◽  
pp. 00106
Author(s):  
Houda Labjar ◽  
Hassan Chaair

The synthesis of apatite silicated Ca10(PO4)6-x(SiO4)x(OH)2-x (SiHA) with 0≤x≤2 was investigated using a wet precipitation method followed by heat treatment using calcium carbonate CaCO3 and phosphoric acid H3PO4 and silicon tetraacetate SiC8H20O4 (TEOS) in medium of water ethanol, with three different silicate concentrations. After drying, the samples are ground and then characterized by different analytical techniques like X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning electron Microscopy (SEM) and chemical analysis.


2012 ◽  
Vol 465 ◽  
pp. 76-79 ◽  
Author(s):  
Shuang Zhan ◽  
Xia Li

The novel Y2O3 nanoflowers were synthesized through a facile hydrothermal method without using any catalyst or template. The phase composition and the microstructure of as-prepared products were characterized by field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD) as well as Fourier transform infrared spectrum. The formation mechanism for the Y2O3 flowers has been proposed.


2003 ◽  
Vol 18 (2) ◽  
pp. 482-486 ◽  
Author(s):  
Guangming Chen ◽  
Nobuo Iyi ◽  
Taketoshi Fujita

New noncovalent bonding polymer/clay hybrids were prepared, including the polymer poly(tetramethyl-p-phenylenediamine) (poly-TMPD). Polymerization occurred in the interlayer space of clay mineral successively after intercalation of monomers. Two types of clay minerals with different surface properties—a hydrophilic lithium fluorotaeniolite (TN) and four kinds of organophilic fluorotaeniolites (org-TNs)—were used as the hosts. Powder x-ray diffraction results showed an increase of 0.7–1.0 nm in the basal spacings, indicating the formation of poly–TMPD in the interlayer space of the hosts. Intercalative polymerization was also supported by Fourier transform infrared spectroscopy. The orientation of the poly-TMPD and thermal behavior were also discussed.


2014 ◽  
Vol 67 (7) ◽  
pp. 1021 ◽  
Author(s):  
Sonya K. Adas ◽  
Jesus A. Ocana ◽  
Scott D. Bunge

The addition of either lithium dimethylamide or lithium diethylamide to a tetrahydrofuran (THF) solution of 1,3-dicyclohexylcarbodiimide yielded THF adducts of lithium 2,2-dimethyl-1,3-dicyclohexylguandidinate (1) and lithium 2,2-diethyl-1,3-dicyclohexylguandidinate (2), respectively. One equivalent of either 1 or 2 was subsequently reacted with one equivalent of Group 11 halide (CuCl, AgBr, and AuCl) to generate oligonuclear complexes with the general formula {M[CyNC(NR2)NCy]}n where M, R, and n are respectively Cu, CH3, 2 (3); Cu, CH2CH3, 2 (4); Ag, CH3, 3 (5); Ag, CH2CH3, 3 (6); Au, CH3, 2 (7); and Au, CH2CH3, 2 (8). Compounds 1–8 were characterized by single-crystal X-ray diffraction. The bulk powders for all complexes were found to be in agreement with the crystal structures based on elemental analyses, Fourier transform infrared spectroscopy, and 1H, 13C, and 7Li NMR studies. The unique structural aspects of this family of Group 11 complexes are highlighted.


2012 ◽  
Vol 548 ◽  
pp. 77-81
Author(s):  
Jia Hua Ma ◽  
Cheng Jia Tan ◽  
Xia Deng ◽  
Chao Xin

Preparation techniques of chitosan from Catharsius molossus L. processing discards were studied by orthogonal design. Preparation techniques were as follows:demineralizing: soaked for 30 min at 80 °C with 1.3 mol•L-1 HCl, then kept for 12 h under room temperature. Deproteinization and delipidation: treated for 6 h at 90 °C with 4 mol•L-1 NaOH. Decolorizing: soaked at room temperature with 3% KMnO4, then treated with 2% oxalic acid at 70 °C. Deacetylation: treated for 6 h at 110 °Cwith 14 mol•L-1 NaOH. Properties of chitosan were characterized by Fourier transform infrared spectroscopy(FTIR), X-ray diffraction (XRD), etc. It proved the technique was stable and feasible. The result also preliminarily showed that chitosan from Catharsius molossus L. was better than shrimp’s. It will be widely applicated in biomedical and other industrial areas with such exiciting properties.


2014 ◽  
Vol 976 ◽  
pp. 164-168 ◽  
Author(s):  
Nayely Torres-Gomez ◽  
Alfredo R. Vilchis-Nestor ◽  
Rosa Maria Gomez-Espinosa ◽  
Ivan Garcia-Orozco

Copper complexes of dithiocarbamates ligands were obtained from RNH2 (R = C6H13-, C12H25- y C18H37-) and an excess of CS2 in the presence of NaOH. Sodium hexyldithiocarbamate is not possible to isolate from solution but the other two were obtained and characterizedby infrared spectroscopy, UV-vis and powder X-ray diffraction. Copper complexes were obtained in situ from ligand solution as greenish powders. All the complexes were characterized by infrared spectroscopy, UV-vis, powder X-ray diffraction and Scanning Electron Microscopy. The complexes show an amorphous phase in the case of DCu12 and nanocrystalline structure for DCu18, as observed in XRD.


2021 ◽  
Vol 12 (1) ◽  
pp. 53-64
Author(s):  
Zilfa Zilfa ◽  
Safni Safni ◽  
Febi Rahmi

An investigation on modification of natural zeolite with ZnO for the degradation of tartrazine. In this study, ZnO as a semiconductor is modified into a natural zeolite as support to form ZnO/zeolite that can increase the efficiency degradation of tartrazine. Further, the formed catalyst was added to tartrazine by determining the variation in ozonolysis time, the amount of addition of the catalyst, and the addition of a catalyst time. The results of degradation were determined by UV-Vis spectrophotometer at 424 nm. The result showed that the percentage of degradation obtained on each catalyst in the degradation. The resulted percent degradation of 20 ml of tartrazine at concentration of 15 mg/L using 20 mg ZnO/zeolite was 56.80%, while using 0.77 mg ZnO was 42.25%, and with the addition of 19.23 mg of Zeolite was 31.18%, all of that condition was proceeded by 40 minutes of ozonolysis. Thus, the result indicates that the ZnO/zeolite catalyst can increase percentages of tartrazine degradation by ozonolysis. It is known that the catalyst ZnO/zeolite is very effective in increasing the degradation of tartrazine. Analysis of tartrazine compounds using fourier-transform infrared spectroscopy (FTIR) after degradation changes in wavenumber indicates that there is a breaking of the bonds of tartrazine compounds. Characterization of ZnO/zeolite catalyst using FTIR, X-Ray diffraction (XRD) and scanning electron microscope (SEM), in each spectrum there was no shift, indicating that there is no change in ZnO/zeolite structure


Crystals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 466
Author(s):  
Loisangela Álvarez ◽  
Blanca Rojas de Gascue ◽  
Rolando J. Tremont ◽  
Edgar Márquez ◽  
Euclides J. Velazco

A new compound, Bi2O2CO3:Al, was synthesized by the coprecipitation method. The characterization was done by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), electronic scanning microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The characterization methods allowed to identify the Bi2O2CO3:Al compound, such as the Al-doped Bi2O2CO3 by XRD, the anionic part (CO32−) by FTIR, and the presence of aluminum in the compound by XPS and EDX. It was confirmed to have a nanostructure like a nanosheet and a microstructure that resembles a type sponge by SEM.


Sign in / Sign up

Export Citation Format

Share Document