scholarly journals Phytoremediation: In situ Alternative for Pollutant Removal from Contaminated Natural Media: A Brief Review

2021 ◽  
Vol 12 (4) ◽  
pp. 4945-4960

Phytoremediation is an in situ application by planting crops in areas of contaminated soil. The contaminated media treated by phytoremediation are soil, sediment, sludge, ground, surface, and wastewater. It is a potential method to prevent toxic contaminants from entering the food chain and conserves biological diversity. This innovative technique uses plant species with good biomass yield to alleviate contaminant toxicity in various polluted media in an ecosystem, and harvestable parts of the plants will turn up into bioenergy. This sustainable and cost-effective technology is a fast emerging alternative as compared to conventional remediation methods. Based on literature obtained from different search engines, this review will be beneficial in gathering and critically analyzing the earlier published data for making a new milestone in the field of phytoremediation.

2019 ◽  
Author(s):  
Hao Shi ◽  
Warren Zipfel ◽  
Ilana Brito ◽  
Iwijn De Vlaminck

ABSTRACTMapping the complex biogeography of microbial communities in situ with high taxonomic and spatial resolution poses a major challenge because of the high density and rich diversity of species in environmental microbiomes and the limitations of optical imaging technology. Here, we introduce High Phylogenetic Resolution microbiome mapping by Fluorescence In-Situ Hybridization (HiPR-FISH), a versatile and cost-effective technology that uses binary encoding and spectral imaging and machine learning based decoding to create micron-scale maps of the locations and identities of hundreds of microbial species in complex communities. We demonstrate the ability of 10-bit HiPR-FISH to distinguish 1023 E. coli strains, each fluorescently labeled with a unique binary barcode. HiPR-FISH, in conjunction with custom algorithms for automated probe design and segmentation of single-cells in the native context of tissues, reveals the intricate spatial architectures formed by bacteria in the human oral plaque microbiome and disruption of spatial networks in the mouse gut microbiome in response to antibiotic treatment. HiPR-FISH provides a framework for analyzing the spatial organization of microbial communities in tissues and the environment at single cell resolution.


2008 ◽  
Vol 1112 ◽  
Author(s):  
Aleksandar Radisic ◽  
Ole Lühn ◽  
Bart Swinnen ◽  
Hugo Bender ◽  
Chris Drijbooms ◽  
...  

AbstractEstablishing a cost-effective technology for the metallization of through-Si vias (TSV) is an important factor in the realization and volume manufacturing of 3D-stacked integrated circuits (3D-SIC). Cu electroplating, which is the preferred technique, should provide not only a void-free TSV fill, but also short filling time and small overburden. The duration of the plating process is a significant contributor to the overall 3D process cost, and thus needs to be minimized. The overburden, the thickness of the material deposited on the top surface of the wafer, has to be limited for compatibility with the following processing steps (e.g. chemical mechanical polishing, CMP). In this paper we report on Cu plating of TSV-s with a thin Ta film on the field. The thin Ta film is sputtered on top of the Ta barrier/Cu seed, and inhibits Cu plating outside the TSV-s. We show that the use of this Ta-cap and in situ electrochemical monitoring techniques leads to significant savings in plating and polishing time, and thus savings in manufacturing costs of 3D-stacked integrated circuits.


RSC Advances ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 993-1003 ◽  
Author(s):  
Lei Xu ◽  
Xiangyu Xing ◽  
Jiani Liang ◽  
Jianbiao Peng ◽  
Jing Zhou

Phytoremediation is a potential cost-effective technology for remediating heavy metal-contaminated soils.


Author(s):  
Rifeng Wu ◽  
Shanquan Wang

AbstractDue to the toxicity of bioaccumulative organohalides to human beings and ecosystems, a variety of biotic and abiotic remediation methods have been developed to remove organohalides from contaminated environments. Bioremediation employing organohalide-respiring bacteria (OHRB)-mediated microbial reductive dehalogenation (Bio-RD) represents a cost-effective and environmentally friendly approach to attenuate highly-halogenated organohalides, specifically organohalides in soil, sediment and other anoxic environments. Nonetheless, many factors severely restrict the implications of OHRB-based bioremediation, including incomplete dehalogenation, low abundance of OHRB and consequent low dechlorination activity. Recently, the development of in situ chemical oxidation (ISCO) based on sulfate radicals (SO 4 ·− ) via the persulfate activation and oxidation (PAO) process has attracted tremendous research interest for the remediation of lowly-halogenated organohalides due to its following advantages, e.g., complete attenuation, high reactivity and no selectivity to organohalides. Therefore, integration of OHRB-mediated Bio-RD and subsequent PAO (Bio-RD-PAO) may provide a promising solution to the remediation of organohalides. In this review, we first provide an overview of current progress in Bio-RD and PAO and compare their limitations and advantages. We then critically discuss the integration of Bio-RD and PAO (Bio-RD-PAO) for complete attenuation of organohalides and its prospects for future remediation applications. Overall, Bio-RD-PAO opens up opportunities for complete attenuation and consequent effective in situ remediation of persistent organohalide pollution.


Author(s):  
Yuliya Prozherina ◽  

3D printing of drugs is an innovative and cost-effective technology, which is a major step towards personalized medicine. This technology can be used for the development of controlled-release drugs; fixed-dose combination drugs, as well as for the creation of orodispersible dosage forms. The global 3D drug market is still largely at the research stage, but its rapid growth is expected in the coming decade [1].


Microscopy ◽  
2020 ◽  
Author(s):  
Xiaoguang Li ◽  
Kazutaka Mitsuishi ◽  
Masaki Takeguchi

Abstract Liquid cell transmission electron microscopy (LCTEM) enables imaging of dynamic processes in liquid with high spatial and temporal resolution. The widely used liquid cell (LC) consists of two stacking microchips with a thin wet sample sandwiched between them. The vertically overlapped electron-transparent membrane windows on the microchips provide passage for the electron beam. However, microchips with imprecise dimensions usually cause poor alignment of the windows and difficulty in acquiring high-quality images. In this study, we developed a new and efficient microchip fabrication process for LCTEM with a large viewing area (180 µm × 40 µm) and evaluated the resultant LC. The new positioning reference marks on the surface of the Si wafer dramatically improve the precision of dicing the wafer, making it possible to accurately align the windows on two stacking microchips. The precise alignment led to a liquid thickness of 125.6 nm close to the edge of the viewing area. The performance of our LC was demonstrated by in situ transmission electron microscopy imaging of the dynamic motions of 2-nm Pt particles. This versatile and cost-effective microchip production method can be used to fabricate other types of microchips for in situ electron microscopy.


2021 ◽  
pp. 100773
Author(s):  
Kamoldara Reansuwan ◽  
Rotsukon Jawana ◽  
Saoharit Nitayavardhana ◽  
Sirichai Koonaphapdeelert
Keyword(s):  

Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 407 ◽  
Author(s):  
Mia Marchini ◽  
Alessandra Marti ◽  
Claudia Folli ◽  
Barbara Prandi ◽  
Tommaso Ganino ◽  
...  

The nutritional and physicochemical properties of sorghum proteins and starch make the use of this cereal for food production challenging. Sprouting is a cost-effective technology to improve the nutritional and functional profile of grains. Two drying treatments were used after sorghum sprouting to investigate whether the drying phase could improve the protein and starch functionalities. Results showed that the drying treatment at lower temperature/longer time (40 °C for 12 h) extended the enzymatic activity that started during sprouting compared to the one performed at higher temperature/shorter time (50 °C for 6 h). An increased protein hydrolysis and water- and oil-holding capacity were found in the flour obtained by the former treatment. Higher protein matrix hydrolysis caused high exposure of starch to enzymes, thus increasing its digestibility, while worsening the technological functionality. Overall, modulating drying conditions could represent a further way, in addition to sprouting, to improve sorghum flour’s nutritional profile.


Sign in / Sign up

Export Citation Format

Share Document