scholarly journals Preparation of Porous Poly(Lactic Acid)/Tricalcium Phosphate Composite Scaffolds for Tissue Engineering

2021 ◽  
Vol 12 (4) ◽  
pp. 5610-5624

The development of bioactive and composite materials for tissue engineering applications is being investigated worldwide. Many approaches have been published by including combinations of resorbable polymers with hydroxyapatite (HA), tricalcium phosphate (TCP), bioactive glasses and glass-ceramics in different scaffolds architectures. Taking into account these antecedents, porous polylactic acid (PLA)/TCP composites were fabricated by employing dissolution-leaching technic from PLA/chloroform solution (10, 15, and 20 wt % of TCP). Composite scaffolds exhibited porosity values 1.3 times higher when compared to PLA foams. Their bioactive response of the composite foams after immersion in a simulated body fluid (SBF) was studied by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR-ATR). By XRD analysis, diffraction peaks attributed to hydroxyapatite deposition were observed; and by FTIR-ATR, new absorption bands corresponding to HA were detected. Regarding mechanical properties, an increasing tendency on elastic Young's modulus values was observed at higher TCP concentrations. These results envision the feasibility of using these composites as precursors for bone tissue materials engineering.

2014 ◽  
Vol 900 ◽  
pp. 306-311 ◽  
Author(s):  
Xiu Lin Shu ◽  
Qing Shan Shi ◽  
Xiao Bao Xie ◽  
Xiao Mo Huang ◽  
Yi Ben Chen

In order to improvedβ-TCP biocompatibility and cell growth, was chosen to modify β-TCP matrices to produce a γ-PGA/β-TCP composite biomaterial. Then, the morphology, water uptake and retention abilities,in vitrodegradation property in the simulated medium, cytotoxicity of this novel γ-PGA/β-TCP composite is investigated. SEM shows that the γ-PGA/β-TCP composite has a porous structure. By increasing the percentage ofγ-PGA from 0% to 50%, the swelling ratio of the composite s was enhanced from 9.0%to 297%. These data suggested that the surface hydrophilicity, water absorption rate, and swelling ratio were improved by adding γ-PGA to the composite. In the cytocompatibility test, the density of MC3T3-E1 preosteoblasts cells on the PTCP1:1 leachates was almost 110% higher than that on the controls on day 3. Therefore, the γ-PGA/β-TCP composite scaffolds, due to their better hydrophilicity, cytocompatibility, and porous structure, are very promising biomaterials for tissure engineering applications.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4397 ◽  
Author(s):  
Zhimin Xu ◽  
Ningning Wang ◽  
Peng Liu ◽  
Yidan Sun ◽  
Yumeng Wang ◽  
...  

Bone defects caused by osteoporosis, bone malignant tumors, and trauma are very common, but there are many limiting factors in the clinical treatment of them. Bone tissue engineering is the most promising treatment and is considered to be the main strategy for bone defect repair. We prepared polydopamine-coated poly-(lactic-co-glycolic acid)/β-tricalcium phosphate composite scaffolds via 3D printing, and a series of characterization and biocompatibility tests were carried out. The results show that the mechanical properties and pore-related parameters of the composite scaffolds are not affected by the coatings, and the hydrophilicities of the surface are obviously improved. Scanning electron microscopy and micro-computed tomography display the nanoscale microporous structure of the bio-materials. Biological tests demonstrate that this modified surface can promote cell adhesion and proliferation and improve osteogenesis through the increase of polydopamine (PDA) concentrations. Mouse cranial defect experiments are conducted to further verify the conclusion that scaffolds with a higher content of PDA coatings have a better effect on the formation of new bones. In the study, the objective of repairing critical-sized defects is achieved by simply adding PDA as coatings to obtain positive results, which can suggest that this modification method with PDA has great potential.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 69 ◽  
Author(s):  
Fan Liu ◽  
Chen Liu ◽  
Bowen Zheng ◽  
Jia He ◽  
Jun Liu ◽  
...  

In bone tissue engineering, an ideal scaffold is required to have favorable physical, chemical (or physicochemical), and biological (or biochemical) properties to promote osteogenesis. Although silk fibroin (SF) and/or soy protein isolate (SPI) scaffolds have been widely used as an alternative to autologous and heterologous bone grafts, the poor mechanical property and insufficient osteoinductive capability has become an obstacle for their in vivo applications. Herein, β-tricalcium phosphate (β-TCP) and graphene oxide (GO) nanoparticles are incorporated into SF/SPI scaffolds simultaneously or individually. Physical and chemical properties of these composite scaffolds are evaluated using field emission scanning electron microscope (FESEM), X-ray diffraction (XRD) and attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR). Biocompatibility and osteogenesis of the composite scaffolds are evaluated using bone marrow mesenchymal stem cells (BMSCs). All the composite scaffolds have a complex porous structure with proper pore sizes and porosities. Physicochemical properties of the scaffolds can be significantly increased through the incorporation of β-TCP and GO nanoparticles. Alkaline phosphatase activity (ALP) and osteogenesis-related gene expression of the BMSCs are significantly enhanced in the presence of β-TCP and GO nanoparticles. Especially, β-TCP and GO nanoparticles have a synergistic effect on promoting osteogenesis. These results suggest that the β-TCP and GO enhanced SF/SPI scaffolds are promising candidates for bone tissue regeneration.


2010 ◽  
Vol 4 (5) ◽  
pp. 366-373 ◽  
Author(s):  
Anne-Marie Haaparanta ◽  
Suvi Haimi ◽  
Ville Ellä ◽  
Niina Hopper ◽  
Susanna Miettinen ◽  
...  

2005 ◽  
Vol 494 ◽  
pp. 499-506 ◽  
Author(s):  
Aldo Roberto Boccaccini ◽  
J.J. Blaker ◽  
V. Maquet ◽  
R. Jerome ◽  
S. Blacher ◽  
...  

Porous bioresorbable and bioactive composite materials designed for applications as scaffolds in tissue engineering are discussed. The systems fabricated by thermally induced phase separation method and based on poly(D,L-lactide) (PDLLA) or poly(lactic acid-co-glycolic acid) (PLGA) with additions of bioactive glass particles (45S5 Bioglass®) are described in detail. The scaffolds exhibit a well-defined, oriented and interconnected porosity. The porosity structure of foams with and without Bioglass® was characterised by scanning electron microscopy. The in vitro bioactivity and degradability of the composite foams were investigated in contact with phosphate buffer saline (PBS) and simulated body fluid (SBF). High chemical reactivity of scaffolds in SBF, which leads to the prompt formation of bonelike hydroxyapatite crystals on the material surfaces, indicates an enhanced bioactive character of the composites and therefore their potential for use as bone tissue engineering scaffolds.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Qing Li ◽  
Tong Wang ◽  
Gui-feng Zhang ◽  
Xin Yu ◽  
Jing Zhang ◽  
...  

Adipose-derived stem cells (ADSCs) are ideal seed cells for use in bone tissue engineering and they have many advantages over other stem cells. In this study, two kinds of calcium phosphate/collagen composite scaffolds were prepared and their effects on the proliferation and osteogenic differentiation of ADSCs were investigated. The hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) composite scaffolds (HTPSs), which have an additionalβ-tricalcium phosphate, resulted in better proliferation of ADSCs and showed osteogenesis-promoting effects. Therefore, such composite scaffolds, in combination with ADSCs or on their own, would be promising for use in bone regeneration and potential clinical therapy for bone defects.


Sign in / Sign up

Export Citation Format

Share Document