scholarly journals Synthesis of Brushite from Phophogypsum Industrial Waste

2021 ◽  
Vol 12 (5) ◽  
pp. 6580-6588

Dicalcium phosphate dihydrate (DCPD) nanoparticles, also known as brushite, are considered an important bioceramic compound. In this study, brushite was prepared from Moroccan phosphogypsum (PG) using a new sol-gel method. A two-step technique undergoes the synthesis of brushite, the preparation of anhydrite from PG followed by adding phosphoric acid in the presence of sodium hydroxide. The morphology, the chemical composition, and the crystallites size were obtained using Scanning Electron Microscopy (SEM-EDAX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR), respectively. According to the Debye-Scherrer equation, these characterization methods indicated that the synthesized brushite was highly pure according to the Ca/P ratio of 1.14 and an average crystallites size estimated at 66 nm. These results proved that the brushite was successfully synthesized from Moroccan phosphogypsum.

2015 ◽  
Vol 33 (4) ◽  
pp. 714-718 ◽  
Author(s):  
Neeraj K. Mishra ◽  
Chaitnaya Kumar ◽  
Amit Kumar ◽  
Manish Kumar ◽  
Pratibha Chaudhary ◽  
...  

AbstractA nanocomposite of 0.5SnO2–0.5Al2O3 has been synthesized using a sol-gel route. Structural and optical properties of the nanocomposite have been discussed in detail. Powder X-ray diffraction and scanning electron microscopy with energy-dispersive X-ray diffraction spectroscopy confirm the phase purity and the particle size of the 0.5SnO2–0.5Al2O3 nanocomposite (13 to 15 nm). The scanning electron microscopy also confirms the porosity in the sample, useful in sensing applications. The FT-IR analysis confirms the presence of physical interaction between SnO2 and Al2O3 due to the slight shifting and broadening of characteristic bands. The UV-Vis analysis confirms the semiconducting nature because of direct transition of electrons into the 0.5SnO2–0.5Al2O3 nanocomposites.


2012 ◽  
Vol 476-478 ◽  
pp. 2059-2062
Author(s):  
Chen Wang ◽  
Ya Dong Li ◽  
Gu Qiao Ding

Tributyl borate was first adopted for the introduction of boron in the preparation of bioactive borosilicate xerogel by sol-gel method. The xerogel reacted continuously in 0.25M K2HPO4 solution with a starting pH value of 7.0 at 37 °C for 1day. The structural, morphologies and compositional changes resulting from the conversion were characterized using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The results indicated that speed of formation of HA was cut way back on the time with the addition of boron and the induction period for the HA nucleation on the surface of the borosilicate xerogel was short than 1 days. The conversion mechanism of the borosilicate xerogels to hydroxyapaptite was also discussed.


2017 ◽  
Vol 12 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Siriporn Sirikingkaew ◽  
Nuta Supakata

This study presents the development of geopolymer bricks synthetized from industrial waste, including fly ash mixed with concrete residue containing aluminosilicate compound. The above two ingredients are mixed according to five ratios: 100:0, 95:5, 90:10, 85:15, and 80:20. The mixture's physico-mechanical properties, in terms of water absorption and the compressive strength of the geopolymer bricks, are investigated according to the TIS 168-2546 standard. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses are used to investigate the microstructure and the elemental and phase composition of the brick specimens. The results indicate that the combination of fly ash and concrete residue represents a suitable approach to brick production, as required by the TIS 168–2546 standard.


2010 ◽  
Vol 152-153 ◽  
pp. 1683-1686
Author(s):  
Qing Wang ◽  
Ya Hui Zhang

Biomorphic silicon carbide (bioSiC) was prepared by high temperature pyrolysis and sol-gel and carbothermal reduction processing at 1600 oC. The morphology and microstructure of carbon-silica composites and purified bioSiC samples were characterized by scanning electron microscopy. The phase composition of the resulting sample was analyzed by X-ray diffraction. The results suggest that the bioSiC mainly consists of cubic ß-SiC, and principally replicates the shape and microstructure of the carbon template.


2015 ◽  
Vol 1088 ◽  
pp. 81-85 ◽  
Author(s):  
T.N. Myasoedova ◽  
Victor V. Petrov ◽  
Nina K. Plugotarenko ◽  
Dmitriy V. Sergeenko ◽  
Galina Yalovega ◽  
...  

Thin SiO2ZrO2films were prepared, up to 0.2 μm thick, by means of the sol–gel technology and characterized by a Scanning electron microscopy and X-ray diffraction. It is shown the presence of monoclinic, cubic and tetragonal phases of ZrO2in the SiO2matrix. The crystallites sizes depend on the annealing temperature of the film and amount to 35 and 56 nm for the films annealed at 773 and 973 K, respectively. The films resistance is rather sensitive to the presence of NO2and O3impurity in air at lower operating temperatures in the range of 30-60°C.


2012 ◽  
Vol 602-604 ◽  
pp. 526-529
Author(s):  
Qing Wang ◽  
Lin Zhang ◽  
Ya Hui Zhang

Biomorphic TiO2 was prepared by high temperature pyrolysis and a modified sol-gel route. The morphology and microstructure of TiO2 samples were characterized by scanning electron microscopy. The phase composition of the resulting sample was analyzed by X-ray diffraction. The results suggest that the biomorphic TiO2 mainly consists of rutile TiO2, and replicates the shape and part microstructure of the carbon template.


2012 ◽  
Vol 727-728 ◽  
pp. 9-13
Author(s):  
Suzana Arleno S. Santos ◽  
Eduardo Sousa Lima ◽  
Luis Henrique Leme Louro ◽  
Célio Albano da Costa

This study aimed to produce nanometric powders of alumina by sol-gel route. Six samples were produced by varying the amount of water for dilution of aluminum nitrate and the calcination temperature. The final products were evaluated by thermogravimetric analysis, scanning electron microscopy, X-ray diffraction and particle size. It could be noticed that, beyond the time of gelation and calcination temperature, the addition of water also influenced the average size of the clusters.


2012 ◽  
Vol 531-532 ◽  
pp. 614-617 ◽  
Author(s):  
Gunawan ◽  
I. Sopyan ◽  
A. Naqshbandi ◽  
S. Ramesh

Biphasic calcium phosphate powders doped with zinc (Zn-doped BCP) were synthesized via sol-gel technique. Different concentrations of Zn have been successfully incorporated into biphasic calcium (BCP) phases namely: 1%, 2%, 3%, 5%, 7%, 10% and 15%. The synthesized powders were calcined at temperatures of 700-900°C. The calcined Zn-doped BCP powders were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential and thermogravimetric analysis (TG/DTA) and field-emission scanning electron microscopy (FESEM). X-ray diffraction analysis revealed that the phases present in Zn-doped are hydroxyapatite, β- TCP and parascholzite. Moreover, FTIR analysis of the synthesized powders depicted that the bands of HPO4 increased meanwhile O-H decreased with an increase in the calcination temperature. Field emission scanning electron microscopy (FESEM) results showed the agglomeration of particles into microscale aggregates with size of the agglomerates tending to increase with an increase in the dopant concentration.


2016 ◽  
Vol 1 (2) ◽  
Author(s):  
Veni Dayu Putri

<p><strong>ABSTRAK</strong></p><p><strong> </strong></p><p>Pembuatan lapisan tipis kalsium fosfat dari kalsium nitrat tetrahidrad (Ca(NO<sub>3</sub>)<sub>2</sub>.4H<sub>2</sub>O) sebagai prekursor kalsium dan asam fosfat (H<sub>3</sub>PO<sub>4</sub>) sebagai <em>prekursor</em> fosfat dengan variasi perbandingan mol Ca/P 1.50 , 1.60 , 1.67 , 1.70 dan 1.80 melalui metode sol-gel telah dilakukan. Sol yang didapat dibakar pada suhu 1000<sup>o</sup>C sehingga terbentuk powder kalsium fosfat berwarna putih. Powder yang didapat dianalisis menggunakan Fourier Transform Infra Red Spectroscopy (FTIR), X-Ray Diffraction (XRD) dan Scanning Electron Microscopy (SEM). Analisis FTIR menunjukkan adanya serapan gugus PO<sub>4</sub><sup>3-</sup>, O-H, H<sub>2</sub>O, CO<sub>2</sub>, dan P<sub>2</sub>O<sub>7</sub><sup>4-</sup>. Difraksi sinar-X dari powder yang terbentuk memberikan puncak pada sudut 2θ yang berbeda yaitu <em>Calsium Pyrophospate</em> (Ca<sub>2</sub>P<sub>2</sub>O<sub>7</sub>) dan <em>Hydroxyapatite</em> HAP (Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2 </sub>pada perbandingan molar Ca/P 1.80 . Analisis SEM menghasilkan <em>Hydroxyapatite </em>dan <em>Calsium Pyrophospate </em>dengan distribusi partikel yang tidak merata dan berbentuk <em>spheric</em>. Proses pelapisan dilakukan pada plat kaca yaitu pada perbandingan mol Ca/P 1.80 menggunakan metode dip-coating dan kemudian dipanaskan pada suhu 400<sup>o</sup>C. Hasil analisa XRD pada lapisan kalsium fosfat memperlihatkan bahwa senyawa yang terbentuk berbentuk amorf. Sedangkan analisis menggunakan SEM memperlihatkan bahwa lapisan tipis kalsium fosfat memiliki morfologi permukaan yang halus, rapat, homogen dan berbentuk <em>speric</em>.</p><p> </p><p>         <strong><em>Kata kunci</em></strong> : kalsium fosfat, <em>hydroxyapatite</em>, <em>dip-coating</em>, metode sol-gel</p><p> </p><p><strong>ABSTRACT</strong></p><p align="center"><strong> </strong></p><p><em>Preparation a thin layer of calcium phosphate using tetrahidrad calcium nitrate (Ca(NO<sub>3</sub>)<sub>2</sub>.4H<sub>2</sub>O) as a precursor of calcium and phosphoric acid (H<sub>3</sub>PO<sub>4</sub>) as a precursor of phosphate with a variation of the mole ratio Ca/P 1.50; 1.60, 1.67, 1.70 and 1.80 through the sol-gel method have been done. Sol obtained burned at a temperature of 1000<sup>o</sup>C to form white powder of calcium phosphate. Powder obtained were analyzed using Fourier Transform Infra Red Spectroscopy (FTIR), X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). FTIR analysis showed absorption PO<sub>4</sub><sup>3-</sup> group,  O-H, H<sub>2</sub>O, CO<sub>2</sub>, and P<sub>2</sub>O<sub>7</sub><sup>4-</sup>. X-ray diffraction from powder formed providing a peak at an angle 2θ different namely Calcium Pyrophospate (Ca<sub>2</sub>P<sub>2</sub>O<sub>7</sub>) and Hydroxyapatite HAP (Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub>) at a molar ratio of Ca/P 1.80. Analysis of SEM produces Hydroxyapatite and Calcium Pyrophospate with particle distribution is uneven and shaped spheric. The coating process performed on glass plates with mole ratio of Ca/P 1.80 using a dip-coating and then heated at a temperature of 400<sup>o</sup>C. XRD analysis on a layer of calcium phosphate showed that the compound formed shaped amorphous. While using SEM analysis showed the morphology of thin layer of calcium phosphate are smooth, dense, homogeneous and shaped speric.</em></p><p><em> </em></p><p><em>         <strong>Keywords :</strong> calcium phosphate, hydroxyapatite, dip-coating, sol-gel method</em></p>


1996 ◽  
Vol 5 (1) ◽  
pp. 096369359600500 ◽  
Author(s):  
R. Rodríguez ◽  
J. Coreño ◽  
J.A. Arenas ◽  
V.M. Castaño

The growth of hydroxyapatite, a calcium phosphate, on silica particles prepared by the sol-gel method is reported. The size of the silica sols was controlled by changing the pH of water before the mixing with the alcoxide. Particle size profiles of sols were obtained by using dynamical light scattering. The characterisation of the composites, of nanometer sizes, was performed by employing X-ray diffraction, scanning electron microscopy and Raman spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document