scholarly journals Chemical Synthesis, Spectral Characterization and Antitumor Activity of Co(II), Zn(II) and Ni(II) Complexes Derived from Thiazole-based Schiff Base Ligand

2021 ◽  
Vol 10 (3) ◽  
pp. 2546-2556

The present study deals with the synthesis of a new Schiff base ligand, 4-(((4-chlorobenzo[d]thiazol-2-yl)imino)methyl)-2-methoxyphenol (HL) derived from the condensation of 2-Amino-4-chlorobenzothiazole and 4-Hydroxy-3-methoxybenzaldehyde, and its Co(II), Zn(II) and Ni(II) complexes in 2:1 molar ratio (2HL:M). The Schiff base ligand and its metal complexes were characterized using FT-IR, UV-Visible absorption, mass spectra, and TGA techniques. The spectral analysis results confirmed the molecular structures of the Schiff base ligand and its metal complexes. Further, the metallic Schiff base complexes showed significant growth inhibition in the adenocarcinoma human alveolar basal epithelial cells, A549, with the Co(II), Zn(II), and Ni(II) complexes having IC50 values of 40.78, 42.04, and 44.69 M, respectively.

2021 ◽  
Vol 11 (1) ◽  
pp. 3249-3260

Herein, we describe the synthesis and characterization of a Schiff base ligand (E)-N'-(2-hydroxybenzylidene)-4-methoxybenzohydrazide (HBMB) and its Mn(II), Ni(II), and Cu(II) metal complexes (C1-C3) respectively. The ligand HBMB was synthesized by reacting condensation of salicylaldehyde and 4-methoxy benzohydrazide in a 1:1 molar ratio. The structure of HBMB and its metal complexes (C1-C3) were evaluated by using UV-Vis, FT-IR, 1H-NMR, mass spectroscopy as well as on the basis of elemental analysis, conductivity measurements, and thermogravimetric techniques (TGA). The synthesized molecules' tumoricidal properties were performed against human breast cancer (MCF-7) and colon cancer (HT 29) cell lines. The biological results indicated that the ligand, HBMB, and metal complexes possess dose-dependent selective cytotoxicity against the tested carcinoma cells. The synthesized compounds were further evaluated for their in vitro antimicrobial activities against Gram-positive bacteria (Staphylococcus aureus), Gram-negative bacteria (Escherichia coli), and fungal strains (Aspergillus niger).


2019 ◽  
Vol 31 (8) ◽  
pp. 1871-1876
Author(s):  
Eida S. Al-Farraj ◽  
Amani S. Alturiqi ◽  
Murefah M. Anazy ◽  
Reda A. Ammar

A novel Co(III) complex derived from hexaadentate Schiff base ligand, H3L was described. The ligand is prepared from the reaction of tris-2-aminoethyl amine and o-vanillin in 1:3 molar ratio. The structure of the ligand and its Co(III) complex was described by micro-analyses, FT-IR, NMR, ESI-MS and UV/visible and thermal stability. DFT study was carried out to get insights into the ligand and its Co(III) complex to compare the values of bond lengths and angles with each other. The electronic spectra, Mulliken atomic charge distribution, HOMO-LUMO energy and the thermodynamic parameters have been calculated.


2020 ◽  
Vol 20 (6) ◽  
pp. 1311
Author(s):  
Shatha Mohammed Hassan Obaid ◽  
Jasim Shihab Sultan ◽  
Abbas Ali Salih Al-Hamdani

The reaction of methyldopa with o-vanillin in refluxing ethanol afforded Schiff base and characterized through physical analysis with a number of spectra also the study of biological activity. The geometry of the Schiff base was identified through using (C.H.N) analysis, Mass, 1H-NMR, FT-IR, UV-Vis spectroscopy. Metal complexes of Cr3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+ with Schiff base have been prepared in the molar ratio 2:1 (Metal:L), (L = Schiff base ligand) except Hg2+ at molar ratio 1:1 (Hg:L). The prepared complexes were characterized by using Mass, FT-IR and UV-Vis spectral studies, on other than magnetic properties and flame atomic absorption, conductivity measurements. According to the results a dinuclear octahedral geometry has been suggested for Cr3+, Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ complexes, dinuclear tetrahedral for Cd2+ and mononuclear tetrahedral for Hg2+ complex. This work highlights the relevance of metal complexation strategy to stabilize the ligands and improve their bioactivity. Schiff base complexes have been screen for their antibacterial activity against Gram negative and positive bacteria and antifungal activity showing promising antibacterial and biological activity.


Author(s):  
B. Akila ◽  
A. Xavier

Schiff base synthesized from 2-hydroxy-1-naphthaldehyde and 2-2’ (ethylene dioxy) bis ethylenediamine (L1) and its Metal complexes, [M (II) (L)6](where M= Mn(II), Ru(III), Cu(II)and V(V) L= Schiff base moiety), have been prepared and characterized by elemental analysis, spectroscopic measurements (infrared, electronic spectroscopy, 1H-NMR, EPR and Mass spectroscopy ). Elemental analysis of the metal complexes was suggested that the stoichiometry ratio is 1:1 (metal-ligand). The electronic spectra suggest an octahedral geometry for MC1and MC2 Schiff base complexes and distorted octahedral for MC3 and MC4 complexes. The Schiff base and its metal chelates have been screened for their invitro test antibacterial activity against three bacteria, gram-positive (Staphylococcus aureus) and gram-negative (Klebsiella pheneuammonia and Salmonella typhi). Two strains of fungus (Aspergillus niger and Candida albicans). The metal chelates were shown to possess more anti fungal activity compare then antibacterial activity and antioxidant properties. The complexes are highly active than the free Schiff-base ligand.    


2017 ◽  
Vol 14 (1) ◽  
pp. 135-147
Author(s):  
Baghdad Science Journal

The free Schiff base ligand (HL1) is prepared by being mixed with the co-ligand 1, 10-phenanthroline (L2). The product then is reacted with metal ions: (Cr+3, Fe+3, Co+2, Ni+2, Cu+2 and Cd+2) to get new metal ion complexes. The ligand is prepared and its metal ion complexes are characterized by physic-chemical spectroscopic techniques such as: FT-IR, UV-Vis, spectra, mass spectrometer, molar conductivity, magnetic moment, metal content, chloride content and microanalysis (C.H.N) techniques. The results show the formation of the free Schiff base ligand (HL1). The fragments of the prepared free Schiff base ligand are identified by the mass spectrometer technique. All the analysis of ligand and its metal complexes are in good agreement with the theoretical values indicating the purity of Schiff base ligand and the metal complexes. From the above data, the molecular structures for all the metal complexes are proposed to be octahedral


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Morteza Montazerozohori ◽  
Kimia Nozarian ◽  
Hamid Reza Ebrahimi

Synthesis of zinc(II)/cadmium(II)/mercury(II) thiocyanate and azide complexes of a new bidentate Schiff-base ligand (L) with general formula of MLX2(M = Zn(II), Cd(II), and Hg(II)) in ethanol solution at room temperature is reported. The ligand and metal complexes were characterized by using ultraviolet-visible (UV-visible), Fourier transform infrared (FT-IR),1H- and13C-NMR spectroscopy and physical characterization, CHN analysis, and molar conductivity.1H- and13C-NMR spectra have been studied in DMSO-d6. The reasonable shifts of FT-IR and NMR spectral signals of the complexes with respect to the free ligand confirm well coordination of Schiff-base ligand and anions in an inner sphere coordination space. The conductivity measurements as well as spectral data indicated that the complexes are nonelectrolyte. Theoretical optimization on the structure of ligand and its complexes was performed at the Becke’s three-parameter hybrid functional (B3) with the nonlocal correlation of Lee-Yang-Parr (LYP) level of theory with double-zeta valence (LANL2DZ) basis set using GAUSSIAN 03 suite of program, and then some theoretical structural parameters such as bond lengths, bond angles, and torsion angles were obtained. Finally, electrochemical behavior of ligand and its complexes was investigated. Cyclic voltammograms of metal complexes showed considerable changes with respect to free ligand.


Author(s):  
Ankita A. Bhalu ◽  
Kalpesh Vilapara ◽  
Minaxi Maru ◽  
Manish Shah

N-(3-Bromo-4-hydroxy-5-methoxybenzylidene)-4-Bromobenzenamine was synthesized. This was further used to synthesize Co(II), Ni(II) and Co(II) based metal complexes and characterized by FT-IR, Elemental analysis, ESI Mass and UV spectroscopy.


2020 ◽  
Vol 13 (2) ◽  
pp. 29-37
Author(s):  
Anilkumar Ambala ◽  
Ch. Abraham Lincoln

A series of novel (E)-2-((Tetrazolo[1,5-a]quinolin-4-ylmethylene)amino)phenol Cu(II), Co(II), Ni(II), Zn(II) and Mn (II) metal complexes have been synthesized 1:1 metal to ligand ratio, and these complexes were characterized by using analytical data such as FT-IR, UV-visible, Mass spectroscopy, SEM, EDX, TGA and magnetic moment measurements. The ligand and all the metal complexes were tested in vitro antimicrobial activity and DNA cleavage studies.


2020 ◽  
Vol 85 (2) ◽  
pp. 215-225 ◽  
Author(s):  
Palaniswamy Venkittapuram ◽  
Mahalakshmi Dhandapani ◽  
Jonekirubavathy Suyambulingam ◽  
Chitra Subramanian

A Schiff base ligand L was synthesized by condensation of 1,2-diaminoethane with creatinine. The reaction of the ligand with metal chloride salt gives Co(II) and Cu(II) complexes. The synthesized ligand and its metal complexes were characterized by elemental analysis, FT-IR, NMR, UV?Vis, conductivity and magnetic susceptibility measurements as well as thermal analyses. Based on spectral data, tetrahedral geometries have been proposed for the Co(II) and Cu(II) complexes. The molar conductivity data show that the complexes are non-electrolytic in nature. In DFT studies, the geometry of the Schiff base ligand and its Co(II) and Cu(II) complexes were fully optimized using the B3LYP functional together with 6-31g(d,p) and LANL2DZ basis sets. The ligand and its metal complexes were tested against four bacterial species and two fungal species. The results revealed that the metal complexes are more potent against the microbes than the parent ligand.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
F. K. Ommenya ◽  
E. A. Nyawade ◽  
D. M. Andala ◽  
J. Kinyua

A new series of Mn (II), Co (II), Ni (II), Cu (II), and Zn (II) complexes of the Schiff base ligand, 4-chloro-2-{(E)-[(4-fluorophenyl)imino]methyl}phenol (C13H9ClFNO), was synthesized in a methanolic medium. The Schiff base was derived from the condensation reaction of 5-chlorosalicylaldehyde and 4-fluoroaniline at room temperature. Elemental analysis, FT-IR, UV-Vis, and NMR spectral data, molar conductance measurements, and melting points were used to characterize the Schiff base and the metal complexes. From the elemental analysis data, the metal complexes formed had the general formulae [M(L)2(H2O)2], where L = Schiff base ligand (C13H9ClFNO) and M = Mn, Co, Ni, Cu, and Zn. On the basis of FT-IR, electronic spectra, and NMR data, “O” and “N” donor atoms of the Schiff base ligand participated in coordination with the metal (II) ions, and thus, a six coordinated octahedral geometry for all these complexes was proposed. Molar conductance studies on the complexes indicated they were nonelectrolytic in nature. The Schiff base ligand and its metal (II) complexes were tested in vitro to evaluate their bactericidal activity against Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus subtilis and Staphylococcus typhi) using the disc diffusion method. The antibacterial evaluation results revealed that the metal (II) complexes exhibited higher antibacterial activity than the free Schiff base ligand.


Sign in / Sign up

Export Citation Format

Share Document