scholarly journals Nickel(II)-Complex of Ceftibuten Dihydrate: Synthesis, Characterization and Thermal Study

2021 ◽  
Vol 20 (2) ◽  
pp. 219-225
Author(s):  
Shuchismita Dey ◽  
Md Zakir Sultan ◽  
Md Abdus Salam

Ceftibuten dihydrate is a semisynthetic, orally administered, third generation cephalosporin antibiotic which is effective against most of the pathogens causing infections in the respiratory tract. Complexation of ceftibuten dehydrate (Ligand, L) was performed with hydrated Ni(II) salt (Metal, M) in the ratio of 2:1 (L:M) in aqueous medium at 90 oC. The metal complex was then characterized by spectral techniques and thermal analyses. The FT-IR spectral data of metal complex suggested the monodentate bonding of metal ion to carboxylate group. Spectral evidence also supported the formation of five-membered ring via coordination of metal ion to β-lactam nitrogen and carboxylate group of parent drug. Thermal behavior of ligand and complex were studied. Thus, thermoanalytical (DSC and TGA) results also supported the formation of new metal complex, indicating the successful interaction of metal ion to ligand. Dhaka Univ. J. Pharm. Sci. 20(2): 219-225, 2021 (December)

2020 ◽  
Vol 41 (1) ◽  
pp. 1-7
Author(s):  
Ifeanyi Edozie Otuokere ◽  
Unwanaobong Friday Robert

Benzylpenicillin, also known as (3,3-Dimethyl-7-oxo-6-(2-phenylacetamido)-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic, is a common bactericidal antibiotic of the betalactamin family which is mostly used to treat infections caused by gram-positive bacterial strains and few gram-negative bacterial strains. Cr (III) complex of benzylpenicillin was synthesized by the reaction of benzylpenicillin with CrCl3.6H2O. The structure of the complex was confirmed through elemental analysis, electrical conductivity, FT-IR, electronic spectra, 1H-NMR, and 13C-NMR spectroscopic methods. The physical properties such as solubility, color and melting point were also determined for both the ligand and the complex. The complex has a deep green color. Both the ligand and the complex are ionic (236.0 and 126.0 Sm2.mol-1). From the spectroscopic result, the ligand behaved as a pentadentate ligand coordinating to the metal ion through OH, NH, C=O of amide, carboxylate& β-lactam. A trigonal bipyramidal geometry has been proposed for the metal complex. The prepared complex was evaluated in vitro for its antibacterial activity against some pathogenic gram-positive (Staphylococcus aureus, Bacillus substilis, Bacillus cereus, and Enterococcus faecalis) and gram-negative bacteria (Escherichia coli, Enterobacter cloacae, Pneumonia aeruginosa and Campylobacter fetus). The metal complex showed enhanced antibacterial activity as compared to the uncomplexed ligand.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1786
Author(s):  
Carla Queirós ◽  
Chen Sun ◽  
Ana M. G. Silva ◽  
Baltazar de Castro ◽  
Juan Cabanillas-Gonzalez ◽  
...  

The development of straightforward reproducible methods for the preparation of new photoluminescent coordination polymers (CPs) is an important goal in luminescence and chemical sensing fields. Isophthalic acid derivatives have been reported for a wide range of applications, and in addition to their relatively low cost, have encouraged its use in the preparation of novel lanthanide-based coordination polymers (LnCPs). Considering that the photoluminescent properties of these CPs are highly dependent on the existence of water molecules in the crystal structure, our research efforts are now focused on the preparation of CP with the lowest water content possible, while considering a green chemistry approach. One- and two-dimensional (1D and 2D) LnCPs were prepared from 5-aminoisophthalic acid and Sm3+/Tb3+ using hydrothermal and/or microwave-assisted synthesis. The unprecedented LnCPs were characterized by single-crystal X-ray diffraction (SCRXD), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), and their photoluminescence (PL) properties were studied in the solid state, at room temperature, using the CPs as powders and encapsulated in poly(methyl methacrylate (PMMA) films, envisaging the potential preparation of devices for sensing. The materials revealed interesting PL properties that depend on the dimensionality, metal ion, co-ligand used and water content.


1983 ◽  
Vol 36 (6) ◽  
pp. 1133 ◽  
Author(s):  
DSC Black ◽  
H Blatt ◽  
Vanderzlam CH Bos ◽  
AJ Liepa

The malonamido dicarbonyl compounds (4)-(6), (8), (13), (15) and (16) have been prepared as potential precursors of macrocyclic nickel(11) complexes. Such complexes could only be formed successfully from the dimethylmalonyl derivative (4). The benzylidene-substituted benzophenone derivatives (15) and (16) underwent a metal-promoted pinacol reaction to yield compounds (17) and (18) containing an 11-membered ring.


2021 ◽  
pp. 1-10
Author(s):  
Ibrahim Erden ◽  
Betül Karadoğan ◽  
Fatma Aytan Kılıçarslan ◽  
Göknur Yaşa Atmaca ◽  
Ali Erdoğmuş

This work describes the synthesis, spectral and fluorescence properties of bis 4-(4-formyl-2,6-dimethoxyphenoxy) substituted zinc (ZnPc) and magnesium (MgPc) phthalocyanines. The new compounds have been characterized by elemental analysis, UV-Vis, FT-IR, 1H-NMR and mass spectra. Afterward, the effects of including metal ion on the photophysicochemical properties of the complexes were studied in biocompatible solvent DMSO to analyze their potential to use as a photosensitizer in photodynamic therapy (PDT). The fluorescence and singlet oxygen quantum yields were calculated as 0.04–0.15 and 0.70–0.52 for ZnPc and MgPc, respectively. According to the results, MgPc has higher fluorescence quantum yield than ZnPc, while ZnPc has higher singlet oxygen quantum yield than MgPc. The results show that the synthesized complexes can have therapeutic outcomes for cancer treatment.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract There are several commercially significant metal complex organic pigments that are based on first row transition metals. The most important of these are the copper phthalocyanine blue and green pigments which find virtually universal use in paints, printing inks, and plastics. These pigments are of such prime importance that they are dealt with separately in three other chapters in this series. This paper describes a group of pigments that are complexes of iron, copper, nickel, and cobalt with polydentate colored ligands of azo, azomethine, oxime, and isoindoline chemical types. The oldest metal complex organic pigment that still finds some use is CI Pigment Green 8, an octahedral oxime iron complex. In the 1970s and 1980s, there was considerable industrial research effort aimed at developing metal complex pigments based on azomethine and isoindoline structures, many of which were found to offer excellent lightfastness, good solvent resistance and thermal stability, although they exhibited rather dull colors. However, several products provide brilliant effects when used in combination with metallic and pearlescent pigments in automotive paints. Many of the pigments introduced have since been withdrawn by the original manufacturers, but a few remain on the market. The synthesis of metal complex pigments generally involves the preparation of the colored ligand, which is then complexed with the transition metal ion


2003 ◽  
Vol 338 (24) ◽  
pp. 2913-2919 ◽  
Author(s):  
Yan Lu ◽  
Guocai Deng ◽  
Fangming Miao ◽  
Zhengming Li

2016 ◽  
Vol 13 (3) ◽  
pp. 531-546
Author(s):  
Baghdad Science Journal

In this work, a series of new Nucleoside analogues (D-galactopyranose linked to oxepanebenzimidazole moiety) was synthesized via multisteps synthesis. The first step involved preparation of two benzimidazoles 2-styrylbenzimidazole and 2-(phenyl ethynyl) benzimidazole via reaction of phenylenediamine with cinnamic acid or ?-phenyl propiolic acid. Electrophilic addition of the prepared benzimidazoles by three anhydrides in the second step afforded (4-6) and (14-16) which in turn were treated with 1,2,3,4-di-O-isopropylidene galactopyranose in the third step to afford a series of the desirable protected nucleoside analogues (7-9) ,(17-19)which after hydrolysis in methanolic sodium methoxidein the fourth step afforded the free nucleoside analogues (10-12) and (20-22) .The synthesized compounds were identified by FT-IR and some of them by 1H-NMR and13C-NMR. The synthesized oxepane nucleoside analogues were screened for their antibacterial activity against three types of bacteria including Staphylococcusaureus ,Bacillus(gram positive) andE.coli (gram negative) bacteria repectively.


2001 ◽  
Vol 79 (10) ◽  
pp. 1415-1421 ◽  
Author(s):  
M Purcell ◽  
J F Neault ◽  
H Malonga ◽  
H Arakawa ◽  
H A Tajmir-Riahi

Some oxovanadium compounds have shown potential to inhibit RNase activity, while at the same time not inhibiting DNase activity. Some vanadyl complexes also inhibit protein synthesis in rabbit reticulocytes, but induce activation of protein–tyrosine kinase. To gain an insight into the interaction of oxovanadium ions with proteins, the present study was designed to examine the bindings of VOSO4 and NaVO3 salts with human serum albumin (HSA) in aqueous solution at physiological pH with metal ion concentrations of 0.0001 to 1 mM and HSA (fatty acid free) concentration of 2% w/v. Gel and capillary electrophoresis (CE) and Fourier transform infrared (FT-IR) spectroscopic methods were used to determine the metal ion binding mode, association constant, and the secondary structure of the protein in the presence of the oxovanadium compounds. Gel electrophoresis results showed that a maximum of 20 vanadyl cations (VO2+) are bound per HSA molecule with strong (K1 = 7.0 × 107 M–1) and weak (K2 = 6.5 × 105 M–1) bindings. Similarly, capillary electrophoresis showed two major bindings for vanadyl cation with K1 = 1.2 × 108 M–1 and K2 = 8.5 × 105 M–1, whereas vanadate (VO–3) has only a weak binding affinity (K = 6.0 × 103 M–1) with HSA molecule. The VO–3 binds mainly to the lysine ε-amino NH+3 groups, while VO2+ binds possibly to the histidine nitrogen atom and the N-terminal of the α-amine residue. Infrared spectroscopic analysis showed metal ion binding results in major protein secondary structural changes from that of the α-helix (55.0 to 43–44%) to the β-sheet (22.0 to 23–26%), β-antiparallel (12.0 to 13–16%), and turn (11.0 to 17–18%), at high metal ion concentration. The observed spectral changes indicate a partial unfolding of the protein structure, in the presence of oxovanadium ions.Key words: oxovanadium, protein, binding mode, binding constant, secondary structure, electrophoresis, FT-IR spectroscopy.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
K. Savithri ◽  
B. C. Vasantha Kumar ◽  
H. K. Vivek ◽  
H. D. Revanasiddappa

A bidentate (N- and O-) imine-based ligand (L1) and its metal complexes of types [CuII(L1)2] (C1), [CuII(L1)(Phen)] (C2), [CoIII(L1)2] (C3), and [CoIII(L1)(Phen)] (C4) (L1 = 2-((E)-(6-fluorobenzo[d]thiazol-2-ylimino)methyl)-4-chlorophenol and phen = 1,10-phenanthroline) were synthesized as potential chemotherapeutic drug candidates. The prepared complexes were structurally characterized by spectral techniques (NMR, FT-IR, LC-MS, EPR, and electronic absorption), thermogravimetric analysis (TGA/DTA), magnetic moment, and CHNO elemental analysis. Spectroscopic studies suggested the distorted octahedral structure for all complexes. In vitro bioassay studies include binding and nuclease activities of the ligand and its complexes with target calf thymus- (CT-) DNA were carried out by employing UV-Vis, fluorescence spectroscopy, viscosity, and gel electrophoresis techniques. The extent of binding propensity was determined quantitatively by Kb and Ksv values which revealed a higher binding affinity for C2 and C4 as compared to C1 and C3. In addition, the scavenging superoxide anion free radical (O∙-2) activity of metal complexes was determined by nitroblue tetrazolium (NBT) light reduction assay. Molecular docking studies with DNA and SOD enzyme were also carried out on these compounds. The antimicrobial study has shown that all the compounds are potential antibacterial agents against Gram-negative bacterial strains and better antifungal agents with respect to standard drugs used.


2021 ◽  
Author(s):  
Raed H. Althomali ◽  
Khalid A. Alamry ◽  
Mahmoud Hussein Abdo ◽  
Shams H. Abdel-Hafez

Abstract In this study, the catalytic reduction behavior of carboxylated alginic acid derivatives has been investigated against the harmful organic dyes including Methyl Orange (MO) and Congo Red (CR). Alginic acid was firstly oxidized through an easy addition of KMnO4 as an oxidizing agent. A carboxylated alginic acid (CAA) has been interacted with selected metal ions (Sn, Fe, Ni, and Zr) through coordination bonds at the value of pH = 4 to form the corresponding metal complexes namely: Sn-CAA, Fe-CAA, Ni-CAA and Zr-CAA. The consistency of the coordination was confirmed by several spectroscopic techniques including FT-IR, XRD, SEM, and EDX. The catalytic reduction of these metal ion-based products was carried out against MO and CR in the presence of NaBH4 as a reducing agent under UV irradiation. All catalysts based metal complexes showed enhanced catalytic reduction against CR compared to MO. Among all those mentioned metal complexes Sn-CAA showed the best catalytic reduction of these dyes. The time taken by the Sn-CAA for CR, and MO is 5 and 7min respectively. Ni-CAA was classified as the second efficient product against both dyes, where the reduction process took 20 and 9 min respectively. The other two catalysts took a long time for CR and MO reduction. Zr-CAA showed more than 80 % reduction of only CR dye within 20 min. Whereas, Fe-CAA did not show any significant sign of reduction against both the dyes after the same time. The order of higher catalytic reduction was illustrated as: Sn-CAA > Ni-CAA > Zr-CAA = Fe-CAA.


Sign in / Sign up

Export Citation Format

Share Document