scholarly journals Enzymatic synthesis of low-trans blends from fractionated mustard oil and palm stearin with linoleic acid by response surface methodology

1970 ◽  
Vol 7 (1) ◽  
pp. 125-132
Author(s):  
MA Alim ◽  
JH Lee ◽  
CC Akoh ◽  
KT Lee

Low-trans blend (LTB) was produced from the fractionated mustard oil (solid phase, S-MO) and palm stearin (PS) through lipase-catalyzed reaction, in which linoleic acid (LA) was intentionally incorporated. For optimizing the reaction condition, response surface methodology (RSM) was employed with three reaction variables such as substrate mole ratio of S-MO to PS (X1), reaction temperature (X2) and reaction time (X3). The predictive models were adequate and reproducible due to no significant lack of fit and the P-value of the model was very small ω6/ω3 ratio, and satisfactory level of coefficient of determination (R2 = 0.89) for ω6/ω3 ratio. The ω6/ω3 ratio of LTB was affected by substrate mole ratio and reaction temperature but reaction time had no significant effect. For considering the ω6/ω3 ratio, the optimum condition found 1:1.7 substrate mole ratio, 61.42 _ reaction temperature and 25.85 h reaction time. Keywords: Low-trans blend; Mustard oil; Palm stearin; Lipase-catalyzed reaction; Response surface methodology; Solid fat content DOI: 10.3329/jbau.v7i1.4974 J. Bangladesh Agril. Univ. 7(1): 125-132, 2009

2012 ◽  
Vol 9 (2) ◽  
pp. 273-282
Author(s):  
MA Alim ◽  
MA Alim ◽  
P Wessman ◽  
PC Dutta

The main purpose of the study was to produce esterified solid fat (ESF) from fractionated rapeseed oil and palm   stearin through lipase-catalyzed reaction. The response surface methodology (RSM) was applied for optimization of   three reaction factors such as substrate mole ratio, enzyme percent, and reaction time. The design was adequate   and reproducible due to satisfactory levels of coefficient of determination (R2, 0.98) for both cases and coefficient   variation (CV, 4.06 for SFC at 10 °C and 7.95 for SFC at 30 °C, respectively). The substrate mole ratio was the   significant term for affecting the response of SFC (P<0.05) rather than reaction time and enzyme percent. Based on   ridge analysis, the production of ESF with SFC 51.48 ±0.94 % at 10 ºC would be predicted by the combinations of   optimized 24.07 h reaction time, 10.66 % enzyme and 1: 1.52 substrate mole ratios. On the other hand, the SFC of   21.44±0.83 at 30 ºC would be predicted by the combinations of optimized 24.37 h reaction time, 10.23 % enzyme and   1: 1.5 substrate mole ratios. The ESF contained mainly of palmitic (45.1%), oleic (40.8%), linoleic (5.6%) and stearic   (4.5%) acids, respectively. The total sterol and tocopherol contents of ESF were 243.27 mg/100g and 19.26 mg/100 g,   respectively. Therefore, these results in this study suggested that RSM can be used to optimize the lipase-catalyzed   synthesis of ESF with suitable physical characteristics.   DOI: http://dx.doi.org/10.3329/jbau.v9i2.11040   J. Bangladesh Agril. Univ. 9(2): 273–282, 2011


2011 ◽  
Vol 366 ◽  
pp. 366-369
Author(s):  
Feng Gao ◽  
Rong Fu ◽  
Ming Yang Qian ◽  
Zhu Min Wang ◽  
Xiang Zhang

Response surface methodology was used to optimize the soaking Mg leaching ratio from the boron slurry screened by 25 fractional factorial design. Five effective factors such as H2SO4 concentrations, reaction time, reaction temperature and stir velocity were tested by using 25 fractional factorial design criterion and three effective factors H2SO4 concentrations, reaction time and reaction temperature showed significant effect(P2SO4 concentrations of 0.29mol/l, reaction time of 90 min and reaction temperature of 50°C. Three runs of additional confirmation experiments were conducted. The mixture magnesium leaching value was 58.20%.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yu-Bin Ji ◽  
Fang Dong ◽  
Miao Yu ◽  
Long Qin ◽  
Dan Liu

The response surface methodology was employed to optimize the synthesis conditions of seleno-Sargassum fusiforme(Harv.) Setch. polysaccharide. Three independent variables (reaction time, reaction temperature, and ratio of Na2SeO3to SFPSI) were tested. Furthermore, the characterization and antioxidant activity of Se-SFPSIin vivowere investigated. The result showed that the actual experimental Se content of Se-SFPSI was 3.352 mg/g at the optimum reaction conditions of reaction time 8 h, reaction temperature 71°C, and ratio of Na2SeO3to SFPSIB 1.0 g/g. A series of experiments showed that the characterization of Se-SFPSIB was significantly different from that of SFPSIB. Additionally, antioxidant activity assay indicated that the Se-SFPSIB could increase catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activity of mice bearing tumor S180in blood, heart, and liver while decreasing malondialdehyde (MDA) levels. It can be concluded that selenylation is a feasible approach to obtain seleno-polysaccharide which was utilized as highly biological medicine or functional food.


2019 ◽  
Vol 19 (4) ◽  
pp. 849
Author(s):  
Nurul Atikah Amin Yusof ◽  
Nursyamsyila Mat Hadzir ◽  
Siti Efliza Ashari ◽  
Nor Suhaila Mohamad Hanapi ◽  
Rossuriati Dol Hamid

Optimization of the lipase catalyzed enzymatic synthesis of betulinic acid amide in the presence of immobilized lipase, Novozym 435 from Candida antartica as a biocatalyst was studied. Response surface methodology (RSM) and 5-level-4-factor central-composite rotatable design (CCRD) were employed to evaluate the effects of the synthesis parameters, such as reaction time (20–36 h), reaction temperature (37–45 °C), substrate molar ratio of betulinic acid to butylamine (1:1–1:3), and enzyme amounts (80–120 mg) on the percentage yield of betulinic acid amide by direct amidation reaction. The optimum conditions for synthesis were: reaction time of 28 h 33 min, reaction temperature of 42.92 °C, substrate molar ratio of 1:2.21, and enzyme amount of 97.77 mg. The percentage yield of actual experimental values obtained 65.09% which compared well with the maximum predicted value of 67.23%. The obtained amide was characterized by GC, GCMS and 13C NMR. Betulinic acid amide (BAA) showed a better cytotoxicity compared to betulinic acid as the concentration inhibited 50% of the cell growth (IC50) against MDA-MB-231 cell line (IC50 < 30 µg/mL).


2011 ◽  
Vol 396-398 ◽  
pp. 1662-1666
Author(s):  
Ze Sheng Zhang ◽  
Min Zheng ◽  
Hong Fei Zou

The main objective of this study was to optimize the hydrolyzing conditions of L-Arabinose from corn fibers. The response surface methodology was used for the optimization. Independent variables were the concentration of the oxalic acid (2-4%), the hydrolysis time (3.5-4.5h) ,the dosage of the oxalic acid(6-10ml/g,v/w)and the reaction temperature (80-100°C). Significant regression model describing the changes of L-Arabinose yield with respect to hydrolysis parameters were established with the coefficient of determination, R2= 0.9501.Data were analyzed by Design Expert 7.0 and regression analysis. The L-Arabinose yield ranged from 7.53% to 11.46%. The models had significant effects on L-Arabinose yield at P<0.05. Optimum the hydrolysis time, the concentration of the oxalic acid, the dosage of the oxalic acid and the reaction temperature were 3.86h, 3.97%, 6mL/g (v/w) and 100°C, respectively. This combination gave 11.46% L-Arabinose yield.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Selvakumar Thiruvenkadam ◽  
Shamsul Izhar ◽  
Yoshida Hiroyuki ◽  
Razif Harun

Subcritical water extraction (SCW) was used to extract oil from Chlorella pyrenoidosa. The operational factors such as reaction temperature, reaction time, and biomass loading influence the oil yield during the extraction process. In this study, response surface methodology was employed to identify the desired extraction conditions for maximum oil yield. Experiments were carried out in batch reactors as per central composite design with three independent factors including reaction temperature (170, 220, 270, 320, and 370°C), reaction time (1, 5, 10, 15, and 20 min), and biomass loading (1, 3, 5, 10, and 15%). A maximum oil yield of 12.89 wt.% was obtained at 320°C and 15 min, with 3% biomass loading. Sequential model tests showed the good fit of experimental data to the second-order quadratic model. This study opens the great potential of SCW to extract algal oil for use in algal biofuel production.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 889
Author(s):  
Hao Peng ◽  
Jing Guo ◽  
Hongzhi Qiu ◽  
Caiqiong Wang ◽  
Chenyu Zhang ◽  
...  

A highly efficient reduction process of Cr (VI) with biochar was conducted in this paper. The results showed that nearly 100% Cr (VI) was reduced at selected reaction conditions: Dosage of biochar at m (C)/m(Cr) = 3.0, reaction temperature of 90 °C, reaction time of60 min, and concentration of H2SO4 of 20 g/L. The reduction kinetics analysis demonstrated that the reduction of Cr (VI) fitted well with the pseudo-first-order model and the apparent activation energy was calculated to be 40.24 kJ/mol. Response surface methodology confirmed that all of the experimental parameters had a positive effect on the reduction of Cr (VI). The influence of each parameter on the reduction process followed the order: Dosage of biochar>concentration of H2SO4>reaction temperature >reaction time. This paper provides a versatile strategy for the treatment of wastewater containing Cr (VI) and shows a bright tomorrow for wastewater treatment.


2021 ◽  
Vol 29 (4) ◽  
Author(s):  
Ratna Dewi Kusumaningtyas ◽  
Haniif Prasetiawan ◽  
Radenrara Dewi Artanti Putri ◽  
Bayu Triwibowo ◽  
Siti Choirunisa Furi Kurnita ◽  
...  

Nyamplung seed (Calophyllum inophyllum L.) oil is a prospective non-edible vegetable oil as biodiesel feedstock. However, it cannot be directly used in the alkaline catalysed transesterification reaction since it contains high free fatty acid (FFA) of 19.17%. The FFA content above 2% will cause saponification reaction, reducing the biodiesel yield. In this work, FFA removal was performed using sulfuric acid catalysed esterification to meet the maximum FFA amount of 2%. Experimental work and response surface methodology (RSM) analysis were conducted. The reaction was conducted at the fixed molar ratio of nyamplung seed oil and methanol of 1:30 and the reaction times of 120 minutes. The catalyst concentration and the reaction temperature were varied. The highest reaction conversion was 78.18%, and the FFA concentration was decreased to 4.01% at the temperature of 60℃ and reaction time of 120 minutes. The polynomial model analysis on RSM demonstrated that the quadratic model was the most suitable FFA conversion optimisation. The RSM analysis exhibited the optimum FFA conversion of 78.27% and the FFA content of 4%, attained at the reaction temperature, catalyst concentration, and reaction time of 59.09℃, 1.98% g/g nyamplung seed oil, and 119.95 minutes, respectively. Extrapolation using RSM predicted that the targeted FFA content of 2% could be obtained at the temperature, catalyst concentration, and reaction time of 58.97℃, 3%, and 194.9 minutes, respectively, with a fixed molar ratio of oil to methanol of 1:30. The results disclosed that RSM is an appropriate statistical method for optimising the process variable in the esterification reaction to obtain the targeted value of FFA.


2009 ◽  
Vol 12 (13) ◽  
pp. 69-76
Author(s):  
Huong Thi Thanh Le ◽  
Tan Viet Le ◽  
Tan Minh Phan ◽  
Hoa Thi Viet Tran

In this study, biodiesel was produced from fat of tra catfish by methanolysis reaction with KOH/y-A12O3 heterogenous catalyst. This research was carried out using response surface methodology (RSM) based on four-variable central composite design (CCD) with a = 1,54671. The transesterification process variables and their investigated ranges were methanol/fat molar ratio (X1: 7/1 - 9/1), catalyst concentration (X2: 5%-7%), reaction time (X3: 60 min - 120 min), and reaction temperature (X4: 55 °C - 65 °C). The result show the biodiesel yield could be reach up to 92,8 % using the following optimized reaction condition: molar ratio of methanol/fat at 8,26/1, catalyst concentration of 5,79 %, reaction time of 96 min, and reaction temperature at 59,6 °C.


Sign in / Sign up

Export Citation Format

Share Document