Optimization of L-Arabinose Hydrolization from Corn Fibers Using Response Surface Methodology

2011 ◽  
Vol 396-398 ◽  
pp. 1662-1666
Author(s):  
Ze Sheng Zhang ◽  
Min Zheng ◽  
Hong Fei Zou

The main objective of this study was to optimize the hydrolyzing conditions of L-Arabinose from corn fibers. The response surface methodology was used for the optimization. Independent variables were the concentration of the oxalic acid (2-4%), the hydrolysis time (3.5-4.5h) ,the dosage of the oxalic acid(6-10ml/g,v/w)and the reaction temperature (80-100°C). Significant regression model describing the changes of L-Arabinose yield with respect to hydrolysis parameters were established with the coefficient of determination, R2= 0.9501.Data were analyzed by Design Expert 7.0 and regression analysis. The L-Arabinose yield ranged from 7.53% to 11.46%. The models had significant effects on L-Arabinose yield at P<0.05. Optimum the hydrolysis time, the concentration of the oxalic acid, the dosage of the oxalic acid and the reaction temperature were 3.86h, 3.97%, 6mL/g (v/w) and 100°C, respectively. This combination gave 11.46% L-Arabinose yield.

2018 ◽  
Vol 25 (3) ◽  
pp. 243-251 ◽  
Author(s):  
Ainaz Alizadeh ◽  
Amin Seyedan Oskuyi ◽  
Sajed Amjadi

The reduction of sugar consumption is one of the major challenges for nutritionists and food industry. Therefore, it is significant to replace sucrose with other types of sweeteners, especially, natural ones. The aim of the present study is to produce low-calorie, sucrose-free mango nectar and to optimize the formulation by employing response surface methodology. The two independent variables were stevia, as a low-calorie sugar replacer (0, 1.5, and 3% w/w) and inulin as a prebiotic texturizer (0, 3, and 6% w/w) in order to compensate sugar elimination defect on viscosity and °Brix. The fitted models indicated a high coefficient of determination. The results revealed that stevia and inulin are as the independent variables which had significant effects on °Brix, viscosity, and sensory scores (p < 0.05). Also, pH was affected by stevia concentration. The rheological behavior of the sucrose-free mango nectar was non-Newtonian, shear thinning as Herschel–Bulkley model which was not different from the reported behavior for normal mango nectar-containing sucrose. The optimization of the variables, based on the response surface three-dimensional plots, demonstrated that utilizing 6% w/w inulin and 3% w/w stevia produced the optimum mango nectar with the desirability of 0.85 without undesirable changes in the physicochemical and organoleptic properties. The optimum sample was produced in triplicate to validate the optimum model as well.


1970 ◽  
Vol 7 (1) ◽  
pp. 125-132
Author(s):  
MA Alim ◽  
JH Lee ◽  
CC Akoh ◽  
KT Lee

Low-trans blend (LTB) was produced from the fractionated mustard oil (solid phase, S-MO) and palm stearin (PS) through lipase-catalyzed reaction, in which linoleic acid (LA) was intentionally incorporated. For optimizing the reaction condition, response surface methodology (RSM) was employed with three reaction variables such as substrate mole ratio of S-MO to PS (X1), reaction temperature (X2) and reaction time (X3). The predictive models were adequate and reproducible due to no significant lack of fit and the P-value of the model was very small ω6/ω3 ratio, and satisfactory level of coefficient of determination (R2 = 0.89) for ω6/ω3 ratio. The ω6/ω3 ratio of LTB was affected by substrate mole ratio and reaction temperature but reaction time had no significant effect. For considering the ω6/ω3 ratio, the optimum condition found 1:1.7 substrate mole ratio, 61.42 _ reaction temperature and 25.85 h reaction time. Keywords: Low-trans blend; Mustard oil; Palm stearin; Lipase-catalyzed reaction; Response surface methodology; Solid fat content DOI: 10.3329/jbau.v7i1.4974 J. Bangladesh Agril. Univ. 7(1): 125-132, 2009


2014 ◽  
Vol 17 (3) ◽  
pp. 213-220 ◽  
Author(s):  
Virginia Coimbra Zuvanov ◽  
Edwin Elard Garcia-rojas ◽  
Clitor Júnior Fernandes de Souza ◽  
Eliana da Silva Gulão ◽  
Luciano José Barreto Pereira

In this work, the optimization process of interpolymeric complexes formation between lactalbumin and the polysaccharides xanthan gum and pectin was studied in order to define the optimum conditions for the complexes formation. For the experimental design, response surface methodology (RSM) for three independent variables was used. The optimum conditions for the complexes formation between lactalbumin and xanthan gum were: pH 6.6, NaCl concentration of 0.6 mol/L and xanthan gum concentration 0.083% w/v. And for the complexes formed between pectin and lactalbumin the conditions were: pH 6.6, NaCl concentration of 0.25 mol/L and pectin concentration of 0.113% w/v. The best fitted model for the experimental data was that corresponding to the complex xanthan gum-lactalbumin, whose coefficient of determination (R²) was 0.97.


2017 ◽  
Vol 69 (3) ◽  
pp. 387-392 ◽  
Author(s):  
Nor Syahirah Mohamad ◽  
Salmiah Kasolang

Purpose An optimized model is often deployed to reduce trial and error in experimental approach and obtain the multi-variant correlation. In this study, response surface methodology (RSM), namely, Box–Behnken design (BBD) approach, has been used to optimize the characterization of lubricant with additives. BBD is based on multivariate analysis whereby the effects of different parameters are considered simultaneously. It is a non-linear system which is more representative of the actual phenomenon. This study aims to investigate the effect of three independent variables, namely, speed, load and concentration of TiO2, on the coefficient of friction (CoF). Design/methodology/approach RSM was applied to get the multiplicity of the self-determining input variables and construct mathematical models. Mathematical models were established to predict the CoF and to conduct a statistical analysis of the independent variables’ interactions on response surface using Minitab 16.0 statistical software. Three parameters were regulated: speed (X1), load (X2) and concentration of TiO2 (X3). The output measured was the CoF. Findings The result obtained from BBD has shown that the most influential parameter was speed, followed by concentration of TiO2 nanoparticles and then normal load. Analysis of variance indicated that the proposed experiment from the quadratic model has successfully interpreted the experimental data with a coefficient of determination R2 = 0.9931. From the contour plot of BBD, the optimization zone for interacting variables has been obtained. The zone indicates two regions of lower friction values (<0.04): concentration between 0.5 to 1.0 Wt.% for a speed range of 1,000 to 2,000 rpm, and load between 17 to 20 kg for a speed in the range of 1,200 to 1,900 rpm. The optimized condition shows that the minimum value of CoF (0.0191) is at speed of 1,782 rpm, load of 20 kg and TiO2 concentration of 1.0 Wt.%. Originality/value In general, it has been shown that RSM is an effective and powerful tool in experimental optimization of multi-variants.


2012 ◽  
Vol 550-553 ◽  
pp. 1653-1658
Author(s):  
Shu Xing Liu ◽  
Shuang Zhang ◽  
Wei Na Jiao

Use Design Expert software to establish a quadratic polynomial model between four factors and content of reducing sugar which is characterization for hydrolysis. The four factors are the amount of complex enzyme, the ratio of complex enzyme, hydrolysis temperature and hydrolysis time. Process of sargassum extracts preparation with complex enzyme is optimized by response surface methodology. The optimum preparation conditions were achieved as follows:amount of complex enzyme is 2.05%, ratio of complex enzyme is 1.98, hydrolysis temperature is 55°C, hydrolysis time is 64minutes, and the final reducing sugar content is 0.832% which is good repeatability.


2019 ◽  
Vol 56 (1) ◽  
pp. 10 ◽  
Author(s):  
Parvathy Unnikrishnan ◽  
Binsi Puthenveetil Kizhakkethil ◽  
Jeyakumari Annamalai ◽  
Joshy Chalil George ◽  
Aliyamveetil Abubacker Zynudheen ◽  
...  

The present study was focused on the selective extraction of surface-active and antioxidant hydrolysates from yellowfin tuna (Thunnus albacares) red meat based on separate hydrolytic conditions using papain. The effect of key processing variables viz., enzymesubstrate ratio (0.25-1.5 %) and hydrolysis time (30-240 min) under optimized temperature and pH, on the protein recovery, surface-active and antioxidative properties, was determined using Response Surface Methodology (RSM) with a central composite design. Single and combined effects of the variables on the responses were studied by formulating 13 experimental runs. The coefficient of determination (R2) ranged between 0.73 – 0.99 indicating the suitability of the fitted regression models. The optimum hydrolytic conditions to get hydrolysates having superior surface-active properties were enzyme-substrate ratio (E/S) of 0.41 % and 30 minutes hydrolysis time with a desirability of 0.611. Similarly, the optimum conditions to exhibit the highest antioxidative properties with a desirability of 0.932 were: 1.28 % E/S and 240 minutes hydrolysis time.


2020 ◽  
Vol 10 (3) ◽  
pp. 219-227
Author(s):  
Ali Behmaneshfar ◽  
Abdolhossein Sadrnia ◽  
Hassan Karimi-Maleh

Background: In recent years, the Design of Experiments (DOE) is used for removing pollutant from wastewater by nano-adsorbent. Some methods are Taguchi, Response Surface Methodology (RSM) and factorial design. The aim of this paper is to review different used methods of DOE in removing pollutant to suggest some notations to scholars. Methods: The reviewed papers were searched in Google Scholar, Scopus, and Web of Science randomly and categorized based on DOE methods. Results: Number of factors and responses in DOE for removing pollutants from wastewater are between 2-6 and 1-4, respectively. There are several computer software programs that provide simple use of these methods, such as Qualitek, Design Expert, Minitab, R and Matlab Programming. All models have a coefficient of determination R-sq more than 0.9. Conclusion: All the mentioned methods are appropriate because of the high R-sq value. Since the largest number of runs are used in RSM, it is not suitable for the experiments which are conducted by expensive materials and process. Furthermore, Design Expert and Minitab are the most popular software used by scholars in DOE methods for the removal of pollutant.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 595
Author(s):  
Mahir Faris Abdullah ◽  
Rozli Zulkifli ◽  
Hazim Moria ◽  
Asmaa Soheil Najm ◽  
Zambri Harun ◽  
...  

Impinging jets are considered to be a well-known technique that offers high local heat transfer rates. No correlation could be established in the literature between the significant parameters and the Nusselt number, and investigation of the interactions between the correlated factors has not been conducted before. An experimental analysis based on the twin impingement jet mechanism was achieved to study the heat transfer rate pertaining to the surface plate. In the current paper, four influential parameters were studied: the spacing between nozzles, velocity, concentration of Nano solution coating and nozzle-plate distance, which are considered to be effective parameters for the thermal conductivity and the heat transfer coefficient of TiO2 nanoparticle, an X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) analysis were done, which highlighted the structure and showed that the nanosolution coated the surface homogenously. Moreover, a comparison was done for the experimental results with that of the predicted responses generated by the Design Expert software, Version 7 User’s Guide, USA. A response surface methodology (RSM) was employed to improve a mathematical model by accounting for a D-optimal design. In addition, the analysis of variance (ANOVA) was employed for testing the significance of the models. The maximum Nu of 91.47, where H = S = 1 cm; Reynolds number of 17,000, and TiO2 nanoparticle concentration of 0.5% M. The highest improvement rate in Nusselt was about 26%, achieved with TiO2 Nanoparticle, when S = 3 cm, H = 6 cm and TiO2 nanoparticle = 0.5 M. Furthermore, based on the statistical analysis, the expected values were found to be in satisfactory agreement with that of the empirical data, which was conducted by accounting for the proposed models’ excellent predictability. Multivariate approaches are very useful for researchers, as well as for applications in industrial processes, as they lead to increased efficiency and reduced costs, so the presented results of this work could encourage the overall uses of multivariate methods in these fields. Hypotheses: A comparison was done for the predicted responses generated by the Design Expert software with the experimental results and then studied to verify the following hypotheses: ► Preparation of three concentrations of TiO2 nanosolution was done and studied. ► The heat transfer rate could be increased by surface coating with TiO2 nanoparticle. ► The heat transfer could be improved by the impingement jet technique with suitable adjustments.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3150
Author(s):  
Mengwei Xu ◽  
Chao Huang ◽  
Jing Lu ◽  
Zihan Wu ◽  
Xianxin Zhu ◽  
...  

Magnetic MXene composite Fe3O4@Ti3C2 was successfully prepared and employed as 17α-ethinylestradiol (EE2) adsorbent from water solution. The response surface methodology was employed to investigate the interactive effects of adsorption parameters (adsorption time, pH of the solution, initial concentration, and the adsorbent dose) and optimize these parameters for obtaining maximum adsorption efficiency of EE2. The significance of independent variables and their interactions were tested by the analysis of variance (ANOVA) and t-test statistics. Optimization of the process variables for maximum adsorption of EE2 by Fe3O4@Ti3C2 was performed using the quadratic model. The model predicted maximum adsorption of 97.08% under the optimum conditions of the independent variables (adsorption time 6.7 h, pH of the solution 6.4, initial EE2 concentration 0.98 mg L−1, and the adsorbent dose 88.9 mg L−1) was very close to the experimental value (95.34%). pH showed the highest level of significance with the percent contribution (63.86%) as compared to other factors. The interactive influences of pH and initial concentration on EE2 adsorption efficiency were significant (p < 0.05). The goodness of fit of the model was checked by the coefficient of determination (R2) between the experimental and predicted values of the response variable. The response surface methodology successfully reflects the impact of various factors and optimized the process variables for EE2 adsorption. The kinetic adsorption data for EE2 fitted well with a pseudo-second-order model, while the equilibrium data followed Langmuir isotherms. Thermodynamic analysis indicated that the adsorption was a spontaneous and endothermic process. Therefore, Fe3O4@Ti3C2 composite present the outstanding capacity to be employed in the remediation of EE2 contaminated wastewaters.


Sign in / Sign up

Export Citation Format

Share Document