scholarly journals EFFECT OF HIGH PRESSURE COOLANT JET ON CUTTING TEMPERATURE, TOOL WEAR AND SURFACE FINISH IN TURNING HARDENED (HRC 48) STEEL

2015 ◽  
Vol 45 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Mozammel Mia ◽  
Nikhil Ranjan Dhar

Hard turning of harder material differs from conventional turning because of its larger specific cutting forces requirements. The beneficial effects of hard turning can be offset by excessive temperature generation which causes rapid tool wear or premature tool failure if the brittle cutting tools required for hard turning are not used properly. Under these considerations, the concept of high-pressure coolant (HPC) presents itself as a possible solution for high speed machining in achieving slow tool wear while maintaining cutting forces at reasonable levels, if the high pressure cooling parameters can be strategically tuned. This paper deals with an experimental investigation of some aspects of the turning process applied on hardened steel (HRC48) using coated carbide tool under high-pressure coolant, comparing it with dry cut. The results indicate that the use of high-pressure coolant leads to reduced surface roughness, delayed tool flank wear, and lower cutting temperature, while also having a minimal effect on the cutting forces.

2013 ◽  
Vol 554-557 ◽  
pp. 1961-1966 ◽  
Author(s):  
Yessine Ayed ◽  
Guenael Germain ◽  
Amine Ammar ◽  
Benoit Furet

Titanium alloys are known for their excellent mechanical properties, especially at high temperature. But this specificity of titanium alloys can cause high cutting forces as well as a significant release of heat that may entail a rapid wear of the cutting tool. To cope with these problems, research has been taken in several directions. One of these is the development of assistances for machining. In this study, we investigate the high pressure coolant assisted machining of titanium alloy Ti17. High pressure coolant consists of projecting a jet of water between the rake face of the tool and the chip. The efficiency of the process depends on the choice of the operating parameters of machining and the parameters of the water jet such as its pressure and its diameter. The use of this type of assistance improves chip breaking and increases tool life. Indeed, the machining of titanium alloys is generally accompanied by rapid wear of cutting tools, especially in rough machining. The work done focuses on the wear of uncoated tungsten carbide tools during machining of Ti17. Rough and finish machining in conventional and in high pressure coolant assistance conditions were tested. Different techniques were used in order to explain the mechanisms of wear. These tests are accompanied by measurement of cutting forces, surface roughness and tool wear. The Energy-dispersive X-ray spectroscopy (EDS) analysis technique made it possible to draw the distribution maps of alloying elements on the tool rake face. An area of material deposition on the rake face, characterized by a high concentration of titanium, was noticed. The width of this area and the concentration of titanium decreases in proportion with the increasing pressure of the coolant. The study showed that the wear mechanisms with and without high pressure coolant assistance are different. In fact, in the condition of conventional machining, temperature in the cutting zone becomes very high and, with lack of lubrication, the cutting edge deforms plastically and eventually collapses quickly. By contrast, in high pressure coolant assisted machining, this problem disappears and flank wear (VB) is stabilized at high pressure. The sudden rupture of the cutting edge observed under these conditions is due to the propagation of a notch and to the crater wear that appears at high pressure. Moreover, in rough condition, high pressure assistance made it possible to increase tool life by up to 400%.


2010 ◽  
Vol 443 ◽  
pp. 382-387 ◽  
Author(s):  
Somkiat Tangjitsitcharoen ◽  
Suthas Ratanakuakangwan

This paper presents the additional work of the previous research in order to verify the previously obtained cutting condition by using the different cutting tool geometries. The effects of the cutting conditions with the dry cutting are monitored to obtain the proper cutting condition for the plain carbon steel with the coated carbide tool based on the consideration of the surface roughness and the tool life. The dynamometer is employed and installed on the turret of CNC turning machine to measure the in-process cutting forces. The in-process cutting forces are used to analyze the cutting temperature, the tool wear and the surface roughness. The experimentally obtained results show that the surface roughness and the tool wear can be well explained by the in-process cutting forces. Referring to the criteria, the experimentally obtained proper cutting condition is the same with the previous research except the rake angle and the tool nose radius.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1515
Author(s):  
Jinxing Wu ◽  
Lin He ◽  
Yanying Wu ◽  
Chaobiao Zhou ◽  
Zhongfei Zou ◽  
...  

Tool-chip friction increases cutting temperature, aggravates tool wear, and shortens the service life of cutting tools. A micro-groove design of the rake face can improve the wear performance of the tool. In this study, we used the finite element simulation “Deform” to obtain the temperature field distribution of the tool rake face. The size of the micro-groove was determined by selecting a suitable temperature field combined with the characteristics of tool–chip flow in the cutting process, and the tool was prepared using powder metallurgy. The three-direction cutting forces and tool tip temperature were obtained by a cutting test. Compared with the original turning tool, the cutting force and cutting temperature of the micro-groove tool were reduced by more than 20%, the friction coefficient was reduced by more than 14%, the sliding energy was reduced and the shear energy was greatly decreased. According to the analysis of tool wear by SEM (scanning electron microscope) and EDS (energy dispersive X-ray spectroscopy), the crater wear, adhesive wear and oxidation wear of the micro-groove tool were lower than those of the original turning tool. In particular, the change in the crater wear area on the rake face of the original tool and the micro-groove tool was consistent with the cutting temperature and the wear width of the flank face. On the whole, the crater wear area and the change rate of the crater wear area of the micro-groove tool were smaller. Due to the proper microgroove structure of the rake face, the tool-chip contact area decreased, and the second rake angle of the tool became larger. Hence, the tool-chip friction, cutting forces, cutting energy consumption were reduced, tool wear was improved, and the service life of the micro-groove tool was five times longer than that of the original tool.


Author(s):  
Emel Kuram

Tool coatings can improve the machinability performance of difficult-to-cut materials such as titanium alloys. Therefore, in the current work, high-speed milling of Ti6Al4V titanium alloy was carried out to determine the performance of various coated cutting tools. Five types of coated carbide inserts – monolayer TiCN, AlTiN, TiAlN and two layers TiCN + TiN and AlTiN + TiN, which were deposited by physical vapour deposition – were employed in the experiments. Tool wear, cutting force, surface roughness and chip morphology were evaluated and compared for different coated tools. To understand the tool wear modes and mechanisms, detailed scanning electron microscope analysis combined with energy dispersive X-ray of the worn inserts were conducted. Abrasion, adhesion, chipping and mechanical crack on flank face and coating delamination, adhesion and crater wear on rake face were observed during high-speed milling of Ti6Al4V titanium alloy. In terms of tool wear, the lowest value was obtained with TiCN-coated insert. It was also found that at the beginning of the machining pass TiAlN-coated insert and at the end of machining TiCN-coated insert gave the lowest cutting force and surface roughness values. No change in chip morphology was observed with different coated inserts.


2002 ◽  
Vol 124 (4) ◽  
pp. 820-832 ◽  
Author(s):  
Jiancheng Liu ◽  
Kazuo Yamazaki ◽  
Hiroyuki Ueda ◽  
Norihiko Narutaki ◽  
Yasuo Yamane

In order to increase the accurate finishing productivity of pearlitic cast iron, face milling by CBN (Cubic Boron Nitride) cutting tools was studied. The main focus of the study is the machinability investigation of pearlitic cast iron with CBN cutting tools by studying the relationships among machining conditions such as feed rate, cutting speed as well as CBN cutting tool type, tool wear, workpiece surface quality, cutting forces, and cutting temperature. In addition, an emphasis is put on the effect of Al additive in pearlitic cast iron on its machinability and tool wear characteristics. High-speed milling experiments with CBN cutting tools were conducted on a vertical machining center under different machining conditions. The results obtained provide a useful understanding of milling performance by CBN cutting tools.


2014 ◽  
Vol 660 ◽  
pp. 18-22
Author(s):  
Mohamed Handawi ◽  
Amad Elddein Issa Elshwain ◽  
Mohd Yusof Noordin ◽  
Norizah Redzuan ◽  
Denni Kurniawan

Minimum quantity lubrication (MQL) or as it’s called semi dry cutting is a technique which spray a small value of lubricant flow rate to the cutting zone area. MQL has been used in many machining process with different cutting tools and workpiece materials due to its green environments and economically advantageous. MQL has become an attractive option to dry and flood cutting in terms of reduce the temperature in the cutting zone and reduce the cost of the product. However, in MQL seems to be machining limited by cutting temperature, because at high speed the effect of oil mist becomes evaporated. Therefore another alternative cooling approach was used with oil mist in this research. This research presents study the performance of nitrogen gas as a coolant and oil mist as lubricant in turning of hardened stainless tool steel (STAVAX ESR) with hardness 48 HRC. Using a gas as coolant with oil mist is a new solution for enhancing machinability. Turning experiments are carried out on CNC turning machine. The cutting insert grade is KC5010 (PVD-TiAlN wiper coated carbide). The experimental results were: 1) nitrogen gas with oil mist prolongs tool life compare with air with oil mist. 2) better product surface finish by using nitrogen gas with oil mist.


Author(s):  
Dong Min Kim ◽  
Do Young Kim ◽  
In Su Jo ◽  
Tae Jin Song ◽  
Kyung Soo Paik ◽  
...  

The hard turning process is widely used in automobile and heavy machinery industries. Extreme cutting conditions like high temperature and tool wear rate, are associated with the hard turning process. Cubic boron nitride (CBN) cutting tool is generally preferred for hard machining operations. However, higher tool cost, and tool failure due to thermal shock limits its widespread usage. In machining performance analysis, tool wear is an important parameter which is directly related to the cost of the machining process. Previous studies have reported the improvement in tool life by using cryogenic coolant as a cutting fluid. Objective of this paper is to investigate the effect of cryogenic cooling on the tool wear of CBN and Ti-coated alumina ceramic cutting tools used in the hard turning of AISI 52100 hardened steel. High pressure cryogenic jet (HPCJ) module was optimized and configured to use it for hard turning case. Computational fluid dynamics (CFD) based simulation was used to test and optimize the nozzle design for the flow of cryogenic coolant. It was validated by fundamental heat removal test. Ceramic and CBN cutting tools were then used for hard turning of parts using HPCJ module. Flank wear lengths for various cooling conditions were measured and analyzed. It was observed that the higher tool life of a Ti-coated alumina ceramic can be achieved under cryogenic cooling technique, as compared to the CBN insert under dry conditions. Cost analysis of these hard turning cases was also conducted to check the feasibility of its usage under realistic shop floor conditions. It was observed that the machining using Ti-coated ceramic under cryogenic jet may reduce the total tooling cost compared to CBN cutting tool conducted under dry conditions.


2009 ◽  
Vol 69-70 ◽  
pp. 163-166
Author(s):  
Yu Wang ◽  
Yuan Sheng Zhai ◽  
Fu Gang Yan ◽  
Xian Li Liu

PCBN cutting tool’s wear in high speed precision reaches tool wear criterion will cause cutting force and cutting temperature increase clearly, chip color change or melt. Even vibration in cutting will influence dimension accuracy and surface quality of workpiece. It is very useful to establish model by FEM simulation of tool wear predicted. The influence of tool wear in cutting conditions will assurance of machining quality and efficiency, decreasing rate of product cost. PCBN cutting tool’s wear is simulated by FEM software Deform 2D, rake face wear state can be analysed by the influence of tools geometric parameters and cutting parameters tool wear.


Sign in / Sign up

Export Citation Format

Share Document