scholarly journals A numerical study: liquid sloshing dynamics in a tank due to uncoupled sway, heave and roll ship motions

2013 ◽  
Vol 10 (2) ◽  
pp. 119-138 ◽  
Author(s):  
Nasar Thuvanismail ◽  
Sannasiraj Sannasi ◽  
Sundar Vallam

In order to explore the physics implicated with the sloshing phenomenon subjected to independent regular sway, heave and roll excitations of the liquid tank system, theoretical studies are carried out. Four liquid fill levels with static liquid depth, hs, to the length, l of aspect ratio (hs/l) 0.163, 0.325, 0.488 and 0.585, are considered. The energy spectra of sloshing oscillation, their qualitative assessment and the harmonics present in the sloshing oscillation are studied. Frequency –Response amplitude has also been presented. The study reveals that sway excites a particular mode of sloshing (primary harmonic) by fulfilling the resonance conditions and also excites secondary modes. However, the roll motion excites the first mode of sloshing irrespective of the excitation frequencies. The heave motion excites the particular mode which is assumed as an initial perturbation.DOI: http://dx.doi.org/10.3329/jname.v10i2.16215 

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Maojun Luo ◽  
Mi-An Xue ◽  
Xiaoli Yuan ◽  
Feng Zhang ◽  
Zhi Xu

The density-stratified liquids horizontal sloshing was tested on a vibration table, and a series of laboratory experiments have been performed to analyze the influence of the excitation frequency on density-stratified liquids sloshing in a partially filled rectangular tank. The MultiphaseInterFOAM solver in OpenFOAM was employed to simulate two-layer fluids sloshing problems. The numerical results of dynamic pressure were validated against the experimental data, showing that the employed model can accurately simulate the stratified liquids sloshing phenomenon. Effects of two-layer fluids liquid depth ratio and total liquid depth on stratified sloshing characteristics were discussed in detail. The response law of the maximum interfacial wave elevation to external excitation frequency was presented in this study. The evolution of the velocity field of density-stratified liquids sloshing is also studied.


2021 ◽  
Vol 163 (A1) ◽  
pp. 29-40
Author(s):  
M R Davis

Wave slam produces dynamic loads on the centre bow of wave piercing catamarans that are related to the relative vertical motion of the bow to the encountered wave surface. Rapid slam forces arise when the arch sections between centre bow and main hulls fill with rising water. In this paper time domain solutions for high speed ship motion in waves, including the action of active motion controls, are used to compute the slam forces. Slamming occurs at specific immersions of the bow whilst the peak slam force is characterised by the maximum relative vertical velocity of the bow during bow entry. Vertical motions of bow and encountered wave are in antiphase at encounter frequencies where slamming is most severe. The range of encounter frequencies where slamming occurs increases with wave height. Wave slam loads reduce ship motions, the heave motion being most reduced. Deployment of a fixed, inactive T-foil can reduce slamming loads by up to 65 %. With active controls peak slamming loads on the bow can be reduced by up to 73% and 79% in 4 m and 3 m seas, local control feedback being marginally the most effective mode of control for reduction of slamming.


2006 ◽  
Vol 45 (6) ◽  
pp. 1121-1125 ◽  
Author(s):  
Zhang Ji-Ping ◽  
Chen Gang ◽  
Zhou Hua-Bin

Author(s):  
T. Nasar ◽  
S. A. Sannasiraj ◽  
V. Sundar

An experimental work has been carried out to study the phenomena of sloshing of liquid in a partially filled tank mounted on a barge exposed to regular beam waves. Liquid fill level with aspect ratio (hs/l, where hs is the static liquid depth and l is the tank length) of 0.325 is studied. The time histories of sloshing oscillation are measured along the length of container at predefined locations. The nonlinear behaviour of sloshing oscillation is observed for the regular wave excitation. The spectra of the sloshing oscillation and their qualitative assessment are reported. The individual sway and heave analytical model have been studied in order to substantiate the importance of coupled mode of excitation. Attempts are made to evaluate the harmonics present in the sloshing oscillation and compare with the results of earlier studies. In the present interaction study, it was found that the nonlinear response of the floating body also plays a role to induce violent sloshing oscillation. The effects of wave excitation frequency on the sloshing oscillation are reported.


2013 ◽  
Vol 10 (06) ◽  
pp. 1350046 ◽  
Author(s):  
M. J. KETABDARI ◽  
H. SAGHI

In this paper, a numerical model is developed based on coupled boundary element–finite element methods (BEM–FEM) to minimize liquid sloshing pressure in trapezoidal tank with different sidewall angles. Different geometric shapes such as rectangular, cylindrical, elliptical, spherical and circular conical have already been studied for ship storage tanks by other researchers. In this paper, a new arrangement, i.e., trapezoidal containers is suggested for liquid storage tanks. The tank shape is optimized based on sloshing pressures and forces for a range of frequencies and amplitudes of sway motion and tank configuration. Fluid is considered to be incompressible and inviscid. Therefore, Laplace equation and nonlinear free surface boundary conditions are used to model the sloshing phenomenon. The results validated using available data showed that a new arrangement of trapezoidal storage panels has a better efficiency against sloshing phenomenon than the conventional rectangular tanks.


2010 ◽  
Vol 21 (05) ◽  
pp. 669-680 ◽  
Author(s):  
GÁBOR HÁZI ◽  
GÁBOR TÓTH

This paper reports on a numerical study of two-dimensional decaying turbulence in a square domain with no-slip walls. The generation of strong small-scale vortices near the no-slip walls have been observed in the lattice Boltzmann simulations just like in earlier pseudospectral calculations. Due to these vortices the enstrophy is not a monotone decaying function of time. Considering a number of simulations and taking their ensemble average, we have found that the decay of enstrophy and that of the kinetic energy can be described well by power-laws. The exponents of these laws depend on the Reynolds number in a similar manner than was observed before in pseudospectral simulations. Considering the ensemble averaged 1D Fourier energy spectra calculated along the walls, we could not find a simple power-law, which fits well to the simulation data. These spectra change in time and reveal an exponent close to -3 in the intermediate and an exponent -5/3 at low wavenumbers. On the other hand, the two-dimensional energy spectra, which remain almost steady in the intermediate decay stage, show clear power-law behavior with exponent larger than -3 depending on the initial Reynolds number.


Author(s):  
José Antonio Romero Navarrete ◽  
Frank Otremba

Taking into account a multitude of experimental and theoretical studies reported in the literature, the braking efficiency of road tankers can be affected by the sloshing forces developed by the carried liquid during such maneuvers, as a result of the dynamic pressures exerted by the sloshing liquid on the vehicle containers walls, and of the shifting of the liquid center of gravity. However, such studies have not involved a full scale experiment. In this paper, a simplified model is proposed to study the effect of the sloshing dynamics on a road tanker braking efficiency. Results from this simplified approach, are compared with data from full scale testing, revealing that the simplified model is good to predict the maximum pressure that the sloshing liquid exerts on one of the vehicle chambers. The simplified model considers a straight truck and a pendulum analogy for the sloshing liquid, whose parameters are derived from a validated methodology to predict the sloshing frequency of the fluid within its container. Simulation of non-sloshing cargo further suggests that the stopping time can be increased by 7 % due to the sloshing cargo.


Author(s):  
Huawei Zhou ◽  
Fuhua Wang ◽  
Renchuan Zhu ◽  
Kaiyuan Shi

Ship parametric roll is one of the main reasons for marine accidents and is introduced into the second-generation intact stability criteria by the International Maritime Organization (IMO) recently. In this paper, a 6-DOF three-dimensional time-domain model based on the IRF (Impulse Response Function) method is constructed to predict large-amplitude ship motions and investigate the phenomenon of parametric roll in head waves as well as major factors. The F-K forces and the restoring forces are calculated on the instantaneous wet surface while the radiation and diffraction forces are kept linear and transformed from frequency-domain results calculated with the three-dimensional Havelock form translating-pulsating source green function method. The proposed weakly nonlinear time-domain model is used to simulate motions of the C11 containership, which predicts the occurrence of the parametric roll successfully and shows a good agreement with the experimental data in amplitude. The inner mechanism of parametric roll is revealed by investigating the time-history and resonance frequencies of restoring forces and coefficients numerically.


2021 ◽  
Vol 156 (A4) ◽  
Author(s):  
M Yoshida ◽  
H Kihara ◽  
H Iwashita ◽  
M Kanda ◽  
T Kinoshita

The speed reduction, additional resistance or slamming caused by the large amplitude ship motions, should be completely restricted for a large fast oceangoing ship because of the strict time-punctuality and the high value of the cargo. A “Resonance-Free SWATH (RFS)”, which has negative restoring moments due to the extremely small water plane area, is introduced to minimize the motion responses. A motion control system using small fins is necessary for the RFS, which has no stability during high speed cruising. Theoretical estimations and experiments to search for the optimum values of PD control gains have been performed. Unsteady characteristics of fin-generated lift such as the time lag and the interaction among the fins and lower hulls have been measured and they are taken into account in the motion equations. Then, experiments using the RFS model with controlling fins have been carried out to validate the theoretical estimation for the motion responses of the RFS in waves. The theoretical and experimental results agree well with each other. The motion responses of the RFS in regular and irregular head waves are compared with those of other hull forms, such as a mono-hull, an ordinary SWATH and a trimaran. The clear advantage of the RFS regarding the seaworthiness has been found. In summary, the heave motion response of the RFS is reduced to 1/60 and the pitch motion becomes1/8, compared with those of the existing mono-hull ship.


Sign in / Sign up

Export Citation Format

Share Document