Bioethanol Production of Cellulase Producing Bacteria from Soils of Agrowaste Field

2021 ◽  
Vol 13 (2) ◽  
pp. 643-655
Author(s):  
A. Thomas ◽  
M. Laxmi ◽  
A. Benny

With decades of studies on cellulose bioconversion, cellulases have been playing an important role in producing fermentable sugars from lignocellulosic biomass. Copious microorganisms that are able to degrade cellulose have been isolated and identified. The present study has been undertaken to isolate and screen the cellulase producing bacteria from soils of agrowaste field. Cellulase production has been qualitatively analyzed in carboxy methylcellulose (CMC) agar medium after congo red staining and NaCl treatment by interpretation with zones around the potent colonies. Out of the seven isolates, only two showed cellulase production. The morphogical and molecular characterization revealed its identity as Escherichia coli and Staphylococcus aureus. The potential of organisms for bioethanol production has been investigated using two substrates, namely, paper and leaves by subjecting with a pre-treatment process using acid hydrolysis to remove lignin which acts as physical barrier to cellulolytic enzymes. Ethanolic fermentation was done using Saccharomyces cerevisiae for 24-48 h and then the bioethanol produced was qualitatively proved by iodoform assay. These finding proves that ethanol can be made from the agricultural waste and the process is recommended as a means of generating wealth from waste.

2016 ◽  
Vol 27 (1) ◽  
pp. 22-35 ◽  
Author(s):  
Elsa Cherian ◽  
M. Dharmendira Kumar ◽  
G. Baskar

Purpose – The purpose of this paper is to optimize production of cellulase enzyme from agricultural waste by using Aspergillus fumigatus JCF. The study also aims at the production of bioethanol using cellulase and yeast. Design/methodology/approach – Cellulase production was carried out using modified Mandel’s medium. The optimization of the cellulase production was carried out using Plackett-Burman and Response surface methodology. Bioethanol production was carried out using simultaneous saccharification and fermentation. Findings – Maximum cellulase production at optimized conditions was found to be 2.08 IU/ml. Cellulase was used for the saccharification of three different feed stocks, i.e. sugar cane leaves, corn cob and water hyacinth. Highest amount of reducing sugar was released was 29.1 gm/l from sugarcane leaves. Sugarcane leaves produced maximum bioethanol concentration of 9.43 g/l out of the three substrates studied for bioethanol production. Originality/value – The present study reveals that by using the agricultural wastes, cellulase production can be economically increased thereby bioethanol production.


2018 ◽  
Vol 40 (4) ◽  
pp. 50-57
Author(s):  
А.A. Dolinskyi ◽  
O. M. Obodovych ◽  
V.V. Sydorenko

The paper presents an overview of bioetanol production technologies. It is noted that world fuel ethanol production in 2017 amounted to more than 27,000 million gallons (80 million tons). Eight countries, namely the USA, Brazil, the EU, China, Canada, Thailand, Argentina, India, together produce about 98% of bioethanol. In Ukraine, the volume of bioethanol production by alcoholic factories in recent years has been gradually increasing and amounted to 2,992.8 ths. dal in 2017. The production of ethanol as an additive to gasoline, with regard to the raw materials used, as well as the corresponding technologies, is historically divided into three generations. The first generation of biofuels produced from food crops rich in sugar or starch is currently dominant. Production of advanced biofuels from non-food crop feedstocks is limited. Output is anticipated to remain modest in the short term, as progress is needed to improve technology readiness. The main stages of bioethanol production from lignocellulosic raw materials are pre-treatment, enzymatic hydrolysis and fermentation. The pre-treatment process aims to reduce of sizes of raw material particles, provision of the components exposure (hemicellulose, cellulose, starch), provision of better access for the enzymes (in fermentative hydrolysis) to the surface of raw materials, and reduction of crystallinity degree of the cellulose matrix. The pre-treatment process is a major cost component of the overall process. The pre-treatment process is highly recommended as it gives subsequent or direct yield of the fermentable sugars, prevents premature degradation of the yielded sugars, prevents inhibitors formation prior hydrolysis and fermentation, lowers the processing cost, and lowers the demand of conventional energy in general. From the perspective of efficiency, promising methods of pre-treatment of lignocellulosic raw materials to hydrolysis are combined methods combining mechanical, chemical and physical mechanisms of influence on raw materials. One method that combines several physical effects on a treated substance is the discrete-pulsed energy input (DPIE) method. The DPIE method can be applied in the pre- treatment of lignocellulosic raw material in the technology bioethanol production for intensifying the process and reducing energy consumption. Ref. 15, Fig. 2.


Author(s):  
John Odhiambo Otieno ◽  
Fredrick Onyango Ogutu

Lignocellulosic biomass is the earth’s most abundant and renewable resource, and, lignin is its strongest component. The lignocellulosic biomass has a potential to produce bioethanol for both domestic and industrial use. The presence of lignin in the biomass, however, hinders the processing and production of bioethanol from the biomass. Hence, to enhance the chances of bioethanol production from the lignocellulosic biomass, lignin has to be pre-treated. The pre-treatment process efficiently separates the interlinked complex components. During the pre-treatment process, the strong lignin component that is highly resistant and a major barrier to solubilization is broken down by hydrolysis of cellulose and hemicellulose. Pre-treatment of lignocellulosic biomass is therefore, necessary to make it more susceptible to microorganisms, enzymes, and pathogens. The initial pre-treatment approaches include physical, physicochemical, and biological methods. The major drawback of this pre-treatment process is its cost implications, as it’s very costly. Studies suggest that even though it’s a costly affair, the pre-treatment methods, however, have a significant impact on the efficient production of ethanol from biomass. Situation Analysis: Bioethanol production from lignocellulosic biomass has mostly been undertaken in Brazil, USA, China, and India. In Kenya, however, little research on bioethanol production from lignocellulosic biomass has been done and adopted. The present review paper seeks to outlay the benefits of bioethanol production from lignocellulosic biomass, the composition of lignocellulosic biomass, its properties, different pre-treatment methods alongside advantages, and, disadvantages, and challenges encountered during bioethanol production. This review eventually will be of great assistance to researchers while developing bioethanol from different lignocellulosic biomass. Research, technology adaption/adaptation, and policy targeted at growing bioethanol industry, could enable Kenya to grow her bioethanol industry.


1986 ◽  
Vol 18 (9) ◽  
pp. 163-173
Author(s):  
R. Boll ◽  
R. Kayser

The Braunschweig wastewater land treatment system as the largest in Western Germany serves a population of about 270.000 and has an annual flow of around 22 Mio m3. The whole treatment process consists of three main components : a pre-treatment plant as an activated sludge process, a sprinkler irrigation area of 3.000 ha of farmland and an old sewage farm of 200 ha with surface flooding. This paper briefly summarizes the experiences with management and operation of the system, the treatment results with reference to environmental impact, development of agriculture and some financial aspects.


2018 ◽  
Vol 2018 (4) ◽  
pp. 103-117
Author(s):  
Bipin Pathak ◽  
Ahmed Al-Omari ◽  
Scott Smith ◽  
Nicholas Passarelli ◽  
Ryu Suzuki ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Anita Ejiro Nwaefuna ◽  
Karl Rumbold ◽  
Teun Boekhout ◽  
Nerve Zhou

AbstractBioethanol from abundant and inexpensive agricultural and industrial wastes possesses the potential to reduce greenhouse gas emissions. Bioethanol as renewable fuel addresses elevated production costs, as well as food security concerns. Although technical advancements in simultaneous saccharification and fermentation have reduced the cost of production, one major drawback of this technology is that the pre-treatment process creates environmental stressors inhibitory to fermentative yeasts subsequently reducing bioethanol productivity. Robust fermentative yeasts with extreme stress tolerance remain limited. This review presents the potential of dung beetles from pristine and unexplored environments as an attractive source of extremophilic bioethanolic yeasts. Dung beetles survive on a recalcitrant lignocellulose-rich diet suggesting the presence of symbiotic yeasts with a cellulolytic potential. Dung beetles inhabiting extreme stress environments have the potential to harbour yeasts with the ability to withstand inhibitory environmental stresses typically associated with bioethanol production. The review further discusses established methods used to isolate bioethanolic yeasts, from dung beetles.


1980 ◽  
Vol 26 (7) ◽  
pp. 760-765 ◽  
Author(s):  
J. N. Saddler ◽  
A. W. Khan

Acetivibrio cellulolyticus, an isolate from an established sewage sludge culture, degraded cellulose powder, Avicel cellulose, and cellobiose. The organism showed maximum cellulose degradation in a medium containing 10 g/L of cellulose and it could also degrade cellulose in media containing up to 75 g/L of cellulose. During the exponential growth phase, large quantities of cellulolytic enzymes were found extracellularly whereas cellobiase activity was cell associated. The crude culture supernate contained endo- and exo-glucanase activities with a pH optimum at 5.0 and a temperature optimum at 50 °C. Maximum cellulase activities were detected in 2- to 3-day-old cultures grown on 1 g/L of cellulose. Cellulose concentration above 10 g/L caused the adsorption of these enzymes to the substrate and consequently lowered their detection in the supernate. The activities at 50 °C for endoglucanase, exoglucanase, and filter paper degrading ability, expressed as micrograms of glucose equivalents released per minute per milligram of protein culture supernate, were 510, 135, and 40 respectively.


Sign in / Sign up

Export Citation Format

Share Document