scholarly journals Study on Wear and Morphological Behavior of Electron Beam Dose Irradiated Polyoxymethylene Copolymer (POM-C)

2016 ◽  
Vol 44 ◽  
pp. 19-28
Author(s):  
Md. Shahinur Rahman ◽  
Heon-Ju Lee ◽  
Jong-Keun Yang ◽  
Konstantin Lyakhov ◽  
Muhammad Athar Uddin

Polyoxymethylene copolymer (POM-C) is the most prominent engineering thermoplastic consisting of repeating carbon-oxygen bonds in the form of oxymethylene groups (OCH2). It is widely used to make small gear wheels, ball bearings, precision parts, automotive and consumer electronics. In this study, the POM-C round blocks were irradiated with 165 KeV electron beam energy in five doses (100, 200, 300, 500 and 700 kGy) in vacuum condition at room temperature. The wear rate, surface hardness and morphological properties of electron beam dose irradiated POM-C blocks surfaces have been analyzed using pin on disk tribometer, optical microscopy, nano-indenter, Raman spectroscopy, 3D nano surface profiler and scanning electron microscopy (SEM). The electron beam irradiation transferred the wear phenomena of unirradiated POM-C sample from the abrasive wear (plough and cracks), adhesive wear  (grooving/striation, micropitting) and scraping to mild scraping and striation for the 100 kGy dose irradiated POM-C sample due to cross-linking (macroscopic networks), chemical free radicals formations and partial physical modification (smoothness), which can be concluded from tribometer, optical microscopic, SEM and Raman spectroscopic observations. It also reduced the surface wear rate and average surface roughness with increasing microsurface hardness at threshold value of cross-linking among all unirradiated and others doses irradiated POM-C blocks. The level of tribological (wear and morphology) attribute improvement relies on the electron beam irradiation condition (energy and dose rate) depending on chemical and physical factors of polymeric materials.

Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1950
Author(s):  
Elena Manaila ◽  
Gabriela Craciun ◽  
Daniel Ighigeanu ◽  
Ion Bogdan Lungu ◽  
Marius Dumitru ◽  
...  

Polymeric composites based on natural rubber (NR) and plasticized starch (PS) obtained by peroxide cross-linking have been subjected to electron beam irradiation in order to investigate their degradation. The amount of PS ranged from 10 to 50 phr and the irradiation dose from 150 to 450 kGy. Irradiation was performed in atmospheric conditions using a linear electron accelerator of 5.5 MeV. Changes in chemical, physical, structural, and morphological properties of composites were correlated with variables, such as PS loading and irradiation dose. Thus, mechanical properties, gel fraction, cross-linking degree, water uptake, weight loss in toluene/water were compared with those obtained before irradiation. The changes in structure and morphology were studied by Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy. Both PS loading and irradiation dose were found to be responsible for the degradation installing. Moreover, it has been shown that at the dose of 450 kGy, chain scission is dominant over cross-linking.


ACS Omega ◽  
2021 ◽  
Author(s):  
Junfei Ma ◽  
Ji-Hyeon Kim ◽  
Jaehun Na ◽  
Junki Min ◽  
Ga-Hyun Lee ◽  
...  

2018 ◽  
Vol 37 (8) ◽  
pp. 3159-3170
Author(s):  
Jing Qian ◽  
Chao Fu ◽  
Xuemei Wang ◽  
Weiyan Li ◽  
Huiying Chu ◽  
...  

2013 ◽  
Vol 86 (1) ◽  
pp. 68-85 ◽  
Author(s):  
K. C. Yong

ABSTRACT The electron beam irradiation technique was successfully used to cross-link poly(butadiene-co-acrylonitrile)-polyaniline dodecylbenzenesulfonate [NBR-PAni.DBSA] blends. Significant increase in cross-linking densities of all blends with doses of irradiation (up to 200 kGy) was observed, and a reasonably high cross-linking density level (in the order of 1030 m−3) also was achieved. All electron beam–irradiated NBR-PAni.DBSA blends exhibited good tensile properties (with tensile strength up to ∼20 MPa), with values that are comparable to those of similar blends cross-linked with either conventional sulfur or peroxide techniques. This kind of irradiation-induced cross-linking technique (at doses up to 200 kGy) also did not interrupt the blends' electrical properties after the blends were sufficiently stabilized for at least 24 h. The irradiated NBR-PAni.DBSA blends also possessed good electrical properties, that is, a single conductivity percolation threshold and high conductivities up to the order of 10−2 S.cm−1. All of these findings indicate a good potential for using the electron beam irradiation technique to prepare highly cross-linked, electrically conductive NBR-PAni.DBSA blends.


2015 ◽  
Vol 30 (7) ◽  
pp. 915-937
Author(s):  
Soo-Tueen Bee ◽  
Lee Tin Sin ◽  
CT Ratnam ◽  
Gin-Khuan Chua ◽  
AR Rahmat

The aim of this research was to investigate the interaction of electron beam irradiation on the different valence of copper (I) and copper (II) oxides (Cu2O and CuO) added low-density polyethylene (LDPE) composites. The results showed the increasing of Cu2O loading level in replacing the CuO has significantly reduced the gel content (or degree of cross-linking networks) in LDPE matrix. This is due to the poorer effect of Cu2O in inducing the polymeric free radicals. Meanwhile, the application of low irradiation dosage (≤100 kGy) has significantly increased the crystallite size for crystallite peak (110) of all LDPE composites. However, further increment in irradiation dosages from 100 to 300 kGy has gradually reduced the crystallite size of deflection peak (110). The tensile strength of all LDPE composites was gradually decreased with increasing of Cu2O loading level due to agglomeration of Cu2O and CuO particles in LDPE matrix. In addition, the increasing of irradiation dosages on all Cu2O /CuO added LDPE composites has gradually increased the tensile strength by inducing the formation of the cross-linking networks in LDPE matrix. Nevertheless, the increasing of irradiation dosage has gradually decreased the elongation at break of all Cu2O /CuO added LDPE composites. This is due to the higher degree of cross-linking networks in LDPE matrix could restrict the mobility of LDPE macromolecular chains when subjected to straining stress.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2398
Author(s):  
Xiangcheng Li ◽  
Huiru Liu ◽  
Nana Tian ◽  
Conglin Zhang ◽  
Peng Lyu ◽  
...  

The “HOPE-I” type high-current pulsed electron beam (HCPEB) equipment was used to irradiate the pure aluminum material with Zr coating preset by ball milling to realize the alloying of a Zr–Al coating surface. The microstructure and phase analysis were conducted by XRD, SEM, and TEM. The experimental results show that after Zr alloying on the Al surface by HCPEB, a layer of 15 μm was formed on the surface of the sample, which was mainly composed of Zr and Al–Zr intermetallic compounds. A large number of Al3Zr (Ll2) particles was uniformly distributed in the alloyed layer, and the Al grains were obviously refined. In addition, the surface hardness and corrosion resistance of the samples were improved significantly after HCPEB irradiation.


Sign in / Sign up

Export Citation Format

Share Document