scholarly journals Quantitative Analysis Of Trace Metal In Water And Soft Tissues Of Balanus Amphitrite In Nandikadal Lagoon, Sri Lanka

Author(s):  
Sivashanthini Kuganathan ◽  
Dhanushka Dilini Jayaweera Shivatharshini Yohi ◽  
Kuttithamby Gunaalan

Due to long–term military activities carried out in Nandikadal lagoon situated at Mullaitivu, Sri Lanka, there are high possibilities to impact water and biota with heavy metals. Balanus amphitrite (Barnacles) has been found as a strong candidate for biomonitoring of trace metals. Therefore, the present study describes the impacts of trace metal pollution on water and the soft tissues of Balanus amphitrite. Water samples and barnacles were collected from two locations of the lagoon for four months during the dry and wet seasons. Quantitative analysis of trace metals (Cd, Cu, Cr, Pb and Zn) were detected in the water and tissue samples using flame atomic absorption spectrometry. Cd, Cr, Pb and Cu found in tissues of barnacles were several times higher than the International recommended level except for Zn. The concentration of Pb in tissues of barnacles showed a significant (p < 0.05) spatial variation. The Cd and Cu concentrations obtained in soft tissues showed significant (p < 0.05) seasonal variations. The concentration of Cr in water showed a significant (p < 0.05) spatial variation and other trace metals (Pb,Cd) except Zn, showed significant (p < 0.05) seasonal variations. There were significant positive correlations between water and soft tissues with respect to Cd (p=0.000 & r = 0.893) and Pb (p=0.002 & r=0.435). Zn found in samples showed negative correlation between water and soft tissues. According to this results Balanus amphitrite has an ability to accumulate trace metals several times greater than in the lagoon water. Therefore, Balanus amphitrite is a strong net–accumulator of Cd, Pb, Zn, Cu, Cr. Hence, it is a good choice to be used as a bioindicator organism to find the level impact of trace metal contamination.

2021 ◽  
Author(s):  
◽  
Annie Graham

<p>Coastal habitats are susceptible to severe contamination due to their exposure to both marine and terrestrial inputs, many of which contain toxic heavy metals. Trace metals in the marine environment can have severe impacts on the health of coastal ecosystems, as even those with essential functions can be toxic at high concentrations, and non-essential elements can cause impairment of biological functions even at low levels.  It is important to understand the chemistry of New Zealand’s marine environment, in order to successfully monitor any changes to the chemical profile of the environment from anthropogenic pollutants. Biological indicators are a useful tool for monitoring ecosystem health, and the impact of human activity on the environment. Crustaceans fulfil all the criteria of being good environmental indicators, as well as having a range of feeding strategies, and being present at multiple trophic levels. The aim of this research was to 1) investigate spatial variation and the effect of urbanisation in trace metal concentration in two native decapod species, Heterozius rotundifrons and Petrolisthes elongatus, which co-occur but feed at different trophic levels; and 2) examine how essential and non-essential trace metals are accumulated into different body tissues of the decapod Jasus edwardsii, a significant cultural and fishery species.  To assess spatial variation and trophic level differences between decapods, baseline data of the concentrations of thirty trace metals was collected and analysed from both species at three sites in the Wellington region. Little variation was found between the sites, despite their differences in proximity to urban development, but significant differences were found between species, with the consumer H. rotundifrons having higher concentrations of most trace metals than the filter feeder P. elongatus.  To assess trace metal accumulation into tissues of J. edwardsii, an experiment was run exposing juveniles to water doped with an elevated copper and neodymium treatment. Copper was preferentially accumulated into the organ tissue, as was expected for an essential element. Neodymium was accumulated differentially into organ and exoskeleton tissue depending on the treatment, with specimens in the elevated treatment taking it up into the shell rather than the organs. A second experiment was also run to investigate whether moulted exoskeletons would passively absorb copper from their environment, which was shown to be the case.  This research aids in understanding the importance of multiple species monitoring, as trace element accumulation was shown to be highly variable depending on species and metals, and contributes valuable geochemical data on native New Zealand species, which have been little studied in this context.</p>


Author(s):  
V. O. E. Akpambang ◽  
A. P. Onifade

Bread loaves and bread ingredients (wheat flours, salt, sugar, yeast and water) were randomly sampled from ten bakeries within Akure metropolis of south western Nigeria and analysed to determine their safety levels for human consumption with respect to trace metal contents. The trace metals (Cu, Zn, Mn, Cr, Cd and Pb) were analysed in the samples using flame atomic absorption spectrophotometer. Results obtained revealed that toxic trace metals such as Cr, Cd and Pb were not detected in any of the samples. However, the levels of essential trace metals such as Cu, Zn and Mn had range of values in mg/kg: (0.039 – 0.091), (0.837 – 3.310) and (0.035 – 3.148); (0.056 – 0.091), (0.034 – 2.755) and (0.054 – 1.054) in the wheat flours and bread samples analysed respectively. This study revealed that the bread ingredients and loaves of bread sampled contained essential trace metals at levels that could not threaten the health of consumers over prolonged regular consumption.


2011 ◽  
Vol 64 (8) ◽  
pp. 1759-1766 ◽  
Author(s):  
Leila Sahli ◽  
Fatima-Zohra Afri-Mehennaoui ◽  
Mohamed El Hadef El Okki ◽  
Christian Blaise ◽  
Smail Mehennaoui

This study sought to assess sediment contamination by trace metals (cadmium, chromium, cobalt, copper, manganese, nickel, lead and zinc), to localize contaminated sites and to identify environmental risk for aquatic organisms in Wadis of Kebir Rhumel basin in the Northeast of Algeria. Water and surficial sediments (0–5 cm) were sampled in winter, spring, summer and autumn from 37 sites along permanent Wadis of the Kebir Rhumel basin. Sediment trace metal contents were measured by Flame Atomic Absorption Spectroscopy. Trace metals median concentrations in sediments followed a decreasing order: Mn &gt; Zn &gt; Pb &gt; Cr &gt; Cu &gt; Ni &gt; Co &gt; Cd. Extreme values (dry weights) of the trace metals are as follows: 0.6–3.4 μg/g for Cd, 10–216 μg/g for Cr, 9–446 μg/g for Cu, 3–20 μg/g for Co, 105–576 μg/g for Mn, 10–46 μg/g for Ni, 11–167 μg/g for Pb, and 38–641 μg/g for Zn. According to world natural concentrations, all sediments collected were considered as contaminated by one or more elements. Comparing measured concentrations with American guidelines (Threshold Effect Level: TEL and Probable Effect Level: PEL) showed that biological effects could be occasionally observed for cadmium, chromium, lead and nickel levels but frequently observed for copper and zinc levels. Sediment quality was shown to be excellent for cobalt and manganese but medium to bad for cadmium, chromium, copper, lead, nickel and zinc regardless of sites.


2020 ◽  
Vol 14 ◽  
pp. 117863022091712
Author(s):  
Felly Esilaba ◽  
Wilkister Nyaora Moturi ◽  
Millicent Mokua ◽  
Terewe Mwanyika

The present study was conducted to determine daily intake of cadmium (Cd), copper (Cu), and lead (Pb) and to assess noncarcinogenic human health risk caused by these trace metals in the commonly consumed fish species ( Oreochromis niloticus, Rastrineobola argentea, Lates niloticus, and Protopterus aethiopicus) in Nakuru town, Kenya. Trace metal determination in the composite samples of the commonly consumed fish species was done using flame atomic absorption spectrophotometer. Cd, Cu, and Pb content in the muscle tissues of the commonly consumed fish species ranged from 0.11 ± 0.045 to 1.11 ± 0.931 mg kg−1 for Cd, 0.48 ± 0.013 to 3.00 ± 0.009 mg kg−1 for Cu, and 3.42 ± 0.045 to 12.78 ± 0.108 mg kg−1 for Pb. Cu concentrations were within Food and Agriculture Organization (FAO) recommended limits for this trace metal in fish. In contrast, Cd and Pb had values above their respective permissible limits in fish. The assessment of human exposure to trace metals indicated that exposure doses of Cd and Cu were safe for fish consumers. Conversely, target hazard quotient (THQ) values of Pb suggested possible health risks for consumers of the commonly consumed fish species in Nakuru town, Kenya.


2021 ◽  
Author(s):  
◽  
Annie Graham

<p>Coastal habitats are susceptible to severe contamination due to their exposure to both marine and terrestrial inputs, many of which contain toxic heavy metals. Trace metals in the marine environment can have severe impacts on the health of coastal ecosystems, as even those with essential functions can be toxic at high concentrations, and non-essential elements can cause impairment of biological functions even at low levels.  It is important to understand the chemistry of New Zealand’s marine environment, in order to successfully monitor any changes to the chemical profile of the environment from anthropogenic pollutants. Biological indicators are a useful tool for monitoring ecosystem health, and the impact of human activity on the environment. Crustaceans fulfil all the criteria of being good environmental indicators, as well as having a range of feeding strategies, and being present at multiple trophic levels. The aim of this research was to 1) investigate spatial variation and the effect of urbanisation in trace metal concentration in two native decapod species, Heterozius rotundifrons and Petrolisthes elongatus, which co-occur but feed at different trophic levels; and 2) examine how essential and non-essential trace metals are accumulated into different body tissues of the decapod Jasus edwardsii, a significant cultural and fishery species.  To assess spatial variation and trophic level differences between decapods, baseline data of the concentrations of thirty trace metals was collected and analysed from both species at three sites in the Wellington region. Little variation was found between the sites, despite their differences in proximity to urban development, but significant differences were found between species, with the consumer H. rotundifrons having higher concentrations of most trace metals than the filter feeder P. elongatus.  To assess trace metal accumulation into tissues of J. edwardsii, an experiment was run exposing juveniles to water doped with an elevated copper and neodymium treatment. Copper was preferentially accumulated into the organ tissue, as was expected for an essential element. Neodymium was accumulated differentially into organ and exoskeleton tissue depending on the treatment, with specimens in the elevated treatment taking it up into the shell rather than the organs. A second experiment was also run to investigate whether moulted exoskeletons would passively absorb copper from their environment, which was shown to be the case.  This research aids in understanding the importance of multiple species monitoring, as trace element accumulation was shown to be highly variable depending on species and metals, and contributes valuable geochemical data on native New Zealand species, which have been little studied in this context.</p>


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Roxana T. Shafiee ◽  
Poppy J. Diver ◽  
Joseph T. Snow ◽  
Qiong Zhang ◽  
Rosalind E. M. Rickaby

AbstractAmmonia oxidation by archaea and bacteria (AOA and AOB), is the first step of nitrification in the oceans. As AOA have an ammonium affinity 200-fold higher than AOB isolates, the chemical niche allowing AOB to persist in the oligotrophic ocean remains unclear. Here we show that marine isolates, Nitrosopumilus maritimus strain SCM1 (AOA) and Nitrosococcus oceani strain C-107 (AOB) have contrasting physiologies in response to the trace metals iron (Fe) and copper (Cu), holding potential implications for their niche separation in the oceans. A greater affinity for unchelated Fe may allow AOB to inhabit shallower, euphotic waters where ammonium supply is high, but competition for Fe is rife. In contrast to AOB, AOA isolates have a greater affinity and toxicity threshold for unchelated Cu providing additional explanation to the greater success of AOA in the marine environment where Cu availability can be highly variable. Using comparative genomics, we predict that the proteomic and metal transport basis giving rise to contrasting physiologies in isolates is widespread across phylogenetically diverse marine AOA and AOB that are not yet available in pure culture. Our results develop the testable hypothesis that ammonia oxidation may be limited by Cu in large tracts of the open ocean and suggest a relatively earlier emergence of AOB than AOA when considered in the context of evolving trace metal availabilities over geologic time.


1991 ◽  
Vol 18 (6) ◽  
pp. 893-903 ◽  
Author(s):  
Inderjit Singh ◽  
Donald S. Mavinic

Samples were taken from 72 high-rise apartment suites (6 suites in 12 individual high-rise towers) and 60 single-family houses located within the Greater Vancouver Regional District. The influence of the following factors on trace metal concentrations in 1-L first-flush drinking water samples and “running” hot water samples was investigated: building height, location, plumbing age, type of plumbing, and type of building. Results of this survey show that with the exception of building height, all factors had a correlation with one or more of the trace metals investigated. The trace metals examined were lead, copper, iron, and zinc. Lead was influenced primarily by building type, copper by plumbing age and type of plumbing, and iron by location. Elevated lead levels were associated with high-rise samples. New copper plumbing systems resulted in high copper levels. Highest iron levels in the drinking water were measured in the East Vancouver location. Zinc did not show a distinct correlation with any of the factors investigated. Brass faucets were the primary source of zinc in tap water. They also contributed substantially to the lead detected in the 1-L first-flush sample. Metal concentrations measured in the high-rise and house samples were compared with the U.S. Environmental Protection Agency's (USEPA) maximum contaminant levels (MCLs) and the proposed “no-action” level for lead. In high-rise samples, the 0.01 mg/L “no-action” level proposed for lead was exceeded in 43% of the samples, and 62% of the samples exceeded the current 1.0 mg/L MCL standard for copper. In single-family house samples, these values were 47% and 73%, respectively. The average lead concentrations were 0.020 mg/L for all high-rise samples and 0.013 mg/L for house samples. Regulatory levels stated above would still be exceeded in 6% of the cases for lead and 9% of the cases for copper, even after prolonged flushing of the tap in a high-rise building. In all cases associated with single-family houses, flushing the cold water tap for 5 minutes was successful in achieving compliance levels. Key words: aggressive water, compliance, corrosive, drinking water, first-flush, GVRD, high-rise, single-family house, trace metals, USEPA.


Sign in / Sign up

Export Citation Format

Share Document