scholarly journals Screening of green AgNPs against the larvicidal activity of Anopheles stephensi

2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Kanika Hada ◽  
Neetu Kachhwaha

Over the last decades, climate change, population growth, deforestation, habitat invasion and insecticide resistance have contributed to the emergence, reemergence and dispersion of various vector-borne diseases including malaria, filariasis, chikunguniya and dengue. The larvicidal activity of aqueous extracts of neem and green-synthesized silver nanoparticles (AgNPs) was served against third instar larvae of Anopheles stephensi. Synthesized AgNPs were characterized UV-Visible spectrum analysis and high resolution TEM. AgNPs (150µl, 200µl and 250µl) and plant extracts (600µl, 800µl and 1000µl) were tested against twenty third larval instar of A. stephensi at different concentrations. All the treated and control samples were analyzed after 24 hrs. The data were analyzed by using One-Way ANOVA test and the results were found to be significant

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ranju Ravindran Santhakumari Manoj ◽  
Maria Stefania Latrofa ◽  
Sara Epis ◽  
Domenico Otranto

Abstract Background Wolbachia is an obligate intracellular maternally transmitted, gram-negative bacterium which forms a spectrum of endosymbiotic relationships from parasitism to obligatory mutualism in a wide range of arthropods and onchocercid nematodes, respectively. In arthropods Wolbachia produces reproductive manipulations such as male killing, feminization, parthenogenesis and cytoplasmic incompatibility for its propagation and provides an additional fitness benefit for the host to protect against pathogens, whilst in onchocercid nematodes, apart from the mutual metabolic dependence, this bacterium is involved in moulting, embryogenesis, growth and survival of the host. Methods This review details the molecular data of Wolbachia and its effect on host biology, immunity, ecology and evolution, reproduction, endosymbiont-based treatment and control strategies exploited for filariasis. Relevant peer-reviewed scientic papers available in various authenticated scientific data bases were considered while writing the review. Conclusions The information presented provides an overview on Wolbachia biology and its use in the control and/or treatment of vectors, onchocercid nematodes and viral diseases of medical and veterinary importance. This offers the development of new approaches for the control of a variety of vector-borne diseases. Graphic Abstract


2017 ◽  
Vol 31 (1) ◽  
Author(s):  
Ann M. Powers

SUMMARYBeginning in 2004, chikungunya virus (CHIKV) went from an endemic pathogen limited to Africa and Asia that caused periodic outbreaks to a global pathogen. Given that outbreaks caused by CHIKV have continued and expanded, serious consideration must be given to identifying potential options for vaccines and therapeutics. Currently, there are no licensed products in this realm, and control relies completely on the use of personal protective measures and integrated vector control, which are only minimally effective. Therefore, it is prudent to urgently examine further possibilities for control. Vaccines have been shown to be highly effective against vector-borne diseases. However, as CHIKV is known to rapidly spread and generate high attack rates, therapeutics would also be highly valuable. Several candidates are currently being developed; this review describes the multiple options under consideration for future development and assesses their relative advantages and disadvantages.


Author(s):  
Soorya Sukumaran ◽  
Rajan Maheswaran

Background: Mosquitoes are blood sucking arthropods and serve as vectors of many diseases causing serious health problems to human beings. Culex quinquefasciatus and Aedes aegypti were responsible for Filariasis and Dengue. Syn­thetic pesticides were effective against mosquitoes as well as main sources of environmental pollution and most of them are immunosuppressant. Botanicals were widely used as insecticides, growth disruptors, repellents, etc. The aim of this research was to determine larvicidal properties of powdered leaf, Elytraria acaulis against late third or early fourth in­star larvae of Cx. quinquefasciatus and Ae. aegypti. Methods: Larvae of Cx. quinquefasciatus and Ae. aegypti were tested at various concentrations of 100, 120, 140, 160, 180 and 200mg/100ml and mortality was recorded after 24h. The LC50 values of the E. acaulis leaf powder were calcu­lated by Probit analysis. Results: The plant powder exhibited strong larvicidal activity against Cx. quinquefasciatus with LC50 value of 116.07mg/100ml against Ae. aegypti 124.25mg/100ml respectively. The result indicated that the plant powder of E. acaulis showed potential larvicidal activity against Cx. quinquefasciatus and Ae. aegypti. Conclusion: The overall findings of the present investigation suggested that the E. acaulis highly effective against Cx. quinquefasciatus and Ae. aegypti larvae. Elytraria acaulis may be used as an alternative to synthetic chemical pesticides for control of vectors to reduce vector borne diseases and did not harm to total environment.


2020 ◽  
Vol 11 (5) ◽  
pp. 210-217
Author(s):  
Donato Traversa

In the recent decades, the geographic distribution of vector-borne diseases (VBDs) of dogs and cats has changed for intrinsic and extrinsic reasons. Therefore some infections/infestations, some of zoonotic concern, have been recorded in geographic areas where they were unexpected. In Europe, arthropods (e.g. ticks, fleas, mosquitoes and sand flies) and the pathogens that they transmit are in general considered to be more frequent in the Mediterranean Basin. Nonetheless, a possible occurrence in other regions should not be a priori excluded, given that travels of animals (to or imported from endemic areas), movements of goods and global warming all may foster the introduction of vectors and/or transmitted pathogens in previously free areas. This could also be the case in the UK, which, because of its territorial characteristics as an island area in north-western Europe, is traditionally considered at minor risk of VBDs. Given the growing increase of movements and travels of pets, and changes in the phenology of many arthropod vectors, it is crucial that veterinary practitioners are aware of and prepared to diagnose, treat and control a series of unexpected diseases.


Chemoecology ◽  
2020 ◽  
Vol 30 (6) ◽  
pp. 277-286
Author(s):  
Collins K. Mweresa ◽  
W. R. Mukabana ◽  
J. J. A. van Loon ◽  
M. Dicke ◽  
W. Takken

Abstract Reliance on broad-spectrum insecticides and chemotherapeutic agents to control hematophagous insect vectors, and their related diseases is threatened by increasing insecticide and drug resistance, respectively. Thus, development of novel, alternative, complementary and effective technologies for surveillance and control of such insects is strongly encouraged. Semiochemicals are increasingly developed for monitoring and intervention of insect crop pests, but this has not been adequately addressed for hematophagous insects of medical and veterinary importance. This review provides an insight in the application of semiochemicals for control of hematophagous insects. Here, we provide specific information regarding the isolation and identification of semiochemical compounds, optimization approaches, detection, perception and discrimination by the insect olfactory system. Navigation of insects along wind-borne odor plumes is discussed and methods of odor application in field situations are reviewed. Finally, we discuss prospects and future challenges for the application of semiochemical-based tools with emphasis on mosquitoes. The acquired knowledge can guide development of more effective components of integrated vector management, safeguard against emerging resistance of insects to existing insecticides and reduce the burden of vector-borne diseases.


Author(s):  
Parbati Phuyal ◽  
Isabelle Marie Kramer ◽  
Doris Klingelhöfer ◽  
Ulrich Kuch ◽  
Axel Madeburg ◽  
...  

The risk of increasing dengue (DEN) and chikungunya (CHIK) epidemics impacts 240 million people, health systems, and the economy in the Hindu Kush Himalayan (HKH) region. The aim of this systematic review is to monitor trends in the distribution and spread of DEN/CHIK over time and geographically for future reliable vector and disease control in the HKH region. We conducted a systematic review of the literature on the spatiotemporal distribution of DEN/CHIK in HKH published up to 23 January 2020, following Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. In total, we found 61 articles that focused on the spatial and temporal distribution of 72,715 DEN and 2334 CHIK cases in the HKH region from 1951 to 2020. DEN incidence occurs in seven HKH countries, i.e., India, Nepal, Bhutan, Pakistan, Bangladesh, Afghanistan, and Myanmar, and CHIK occurs in four HKH countries, i.e., India, Nepal, Bhutan, and Myanmar, out of eight HKH countries. DEN is highly seasonal and starts with the onset of the monsoon (July in India and June in Nepal) and with the onset of spring (May in Bhutan) and peaks in the postmonsoon season (September to November). This current trend of increasing numbers of both diseases in many countries of the HKH region requires coordination of response efforts to prevent and control the future expansion of those vector-borne diseases to nonendemic areas, across national borders.


2019 ◽  
Vol 374 (1775) ◽  
pp. 20180275 ◽  
Author(s):  
David Alonso ◽  
Andy Dobson ◽  
Mercedes Pascual

The history of modelling vector-borne infections essentially begins with the papers by Ross on malaria. His models assume that the dynamics of malaria can most simply be characterized by two equations that describe the prevalence of malaria in the human and mosquito hosts. This structure has formed the central core of models for malaria and most other vector-borne diseases for the past century, with additions acknowledging important aetiological details. We partially add to this tradition by describing a malaria model that provides for vital dynamics in the vector and the possibility of super-infection in the human host: reinfection of asymptomatic hosts before they have cleared a prior infection. These key features of malaria aetiology create the potential for break points in the prevalence of infected hosts, sudden transitions that seem to characterize malaria’s response to control in different locations. We show that this potential for critical transitions is a general and underappreciated feature of any model for vector-borne diseases with incomplete immunity, including the canonical Ross–McDonald model. Ignoring these details of the host’s immune response to infection can potentially lead to serious misunderstanding in the interpretation of malaria distribution patterns and the design of control schemes for other vector-borne diseases.This article is part of the theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes’. This issue is linked with the subsequent theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control’.


Sign in / Sign up

Export Citation Format

Share Document