scholarly journals Metode Hidroponik secara DFT ( Deep Flow Technique ) dan NFT (Nutrient Film Technique) pada beberapa Media Tanam terhadap Pertumbuhan Tanaman Bayam merah (Alternanthera amoena Voss)

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Abd Chalim Asnawi ◽  
Saimul Laili ◽  
Tintrim Rahayu

Hydroponics is agricultural cultivation without using soil media, where the media can be replaced with husk charcoal or cocopeat media. However, hydroponics is actually the use of nutrients in a solution so that the nutritional needs of the plant are as desired. Accordingly, plant growth can be maximized. The use of media other than soil does not inhibit plant growth because both charcoal husk and cocopeat can store nutrients so that plant growth is not disturbed. This study aims to determine the response of red spinach (Alternanthera amoena Voss.) to Cocopeat and husk charcoal, and also to determine the use of DFT (Deep Flow Technique) and NFT (Nutrient Film Technique) hydroponic systems on the growth and development of red spinach. The method used was RBD where Rockwool media as a control, with 6 treatments and 4 replications. From the research results, the cocopeat media and husk charcoal media gave different results where the cocopeat growing medium was greater than the husk charcoal growing medium and the DFT and NFT systems gave significantly different results where the NFT yield was greater than DFT.Keywords: Hydroponics, Red Spinach, Cocopeat, Husk Charcoal, DFT, NFTABSTRAKHidroponik adalah lahan budidaya pertanian tanpa menggunakan media tanah, dimana media dapat digantikan dengan media arang sekam ataupun cocopeat. namun hidroponik sesungguhnya yakni penggunaan nutrisi dalam larutan sehingga kebutuhan nutrisi pada tanaman sesuai keinginan. Maka pertumbuhan tanaman bisa lebih maksimal. penggunaan media selain tanah tidak menghambat pertumbuhan tanaman karena baik media arang sekam maupun cocopeat dapat menyimpan unsur hara sehingga pertumbuhan tanaman tidak terganggu. Penelitian ini bertujuan untuk mengetahui respon pada tanaman bayam merah (Alternanthera amoena Voss.) terhadap media tanam Cocopeat, dan Arang sekam, dan juga untuk mengetahui penggunaan sistem hidroponik DFT (Deep Flow Technique) dan NFT (Nutrient Film Technique) terhadap pertumbuhan dan perkembangan bayam merah. Metode yang digunakan adalah RAK dimana media rockwool sebagai kontrol, dengan 6 perlakuan dan 4 ulangan. Dari hasil penelitian Media tanam cocopeat dan media arang sekam memberikan hasil yang berbeda dimana media tanam cocopeat lebih besar dari pada media tanam arang sekam dan pada sistem DFT dan NFT memberikan hasil yang berbeda nyata dimana hasil NFT lebih besar dari pada DFT.Kata kunci : Hidroponik, Bayam Merah, Cocopeat, Arang sekam, DFT, NFT

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
E. Hanggari Sittadewi., dkk

Nutrient Block is a growing medium product in the form of a square (25 x 25 cm) or cylindrical (diameter = 20 cm, height = 25 cm) made of peat which has been composted, plus adhesive gypsum or tapioca waste. Nutrient Block is designed to support the post mining land rehabilitation program that is now threatening the environmental degradation in mining areas. Nutrient Block products has been proved good for growth because of the media in addition to having physical properties that are capable of storing large amounts of water, contain enough nutrients in the form available to plants,so it can support plant growth. Results of the Nutrient Block application test to Jabon (Anthocephalus cadaba) and Sengon (Paraserianthes falcataria) plants showed that good performance, both plant height and diameter of trees and leaf growth in plants Jabon appear healthy and getting wider.keywords: nutrient block, post-mining land rehabilitation. Paraserianthes falcataria, Anthocephalus cadaba


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 540D-540
Author(s):  
Karen L. Panter ◽  
Steven E. Newman ◽  
Amy M. Briggs ◽  
Michael J. Roll

Three application rates of two new growing medium surfactants were tested under two different irrigation systems on Dianthus barbatus plants. The objectives of the study were to determine if either of the surfactants influenced plant growth and development and to determine if surfactant applications decreased irrigation frequencies. The three levels of surfactant tested were 0 mg·L–1 (control), 10 mg·L–1 applied at each watering, and 100 mg·L–1 applied once a week. Each surfactant and rate was tested on hand-watered and ebb-and-flood irrigated plants. D. barbatus plants were grown for 8 weeks in 875-ml (12.7 cm) pots. Plants were watered when at least one plant per treatment showed visible wilt. Results showed that phytotoxicity symptoms occurred with repeated applications of both surfactants tested, especially at the 10 mg·L–1 rate at each watering. Application of either surfactant at 10 mg·L–1 at each watering decreased plant heights, dry weights, and plant widths, and increased phytotoxicity symptoms over the controls and the 100 mg·L–1 weekly treatments. Fewer waterings were required in surfactant-treated containers.


2021 ◽  
pp. 1-7
Author(s):  
Nathan J. Eylands ◽  
Michael R. Evans ◽  
Angela M. Shaw

Various saponins have demonstrated allelochemical effects such as bactericidal impacts as well as antimycotic activity against some plant pathogenic fungi, thereby acting to benefit plant growth and development. A commercial saponin solution was evaluated for bactericidal effects against Escherichia coli and growth of lettuce (Lactuca sativa) in a hydroponic system. E. coli (P4, P13, and P68) inoculum at final concentration of 108 colony-forming units (cfu)/mL was added to 130 L of a fertilized solution recirculating in a nutrient film technique (NFT) system used to grow ‘Rex’ lettuce. After 5 weeks in the NFT system, E. coli populations were lowest in the inoculated treatment that did not contain any saponin addition (0.89 log cfu/mL) when compared with all other inoculated treatments (P < 0.001). The treatment containing 100 µg·mL−1 saponin extract had an E. coli population of 4.61 log cfu/mL after 5 weeks that was higher than treatments containing 25 µg·mL−1 or less (P < 0.0001). Thus, higher E. coli populations were observed at higher saponin concentrations. Plant growth was also inhibited by increasing saponin concentrations. Fresh and dry shoot weight were both higher in the inoculated and uninoculated treatments without the saponin addition after 5 weeks in the NFT system (P < 0.0001). Lettuce head diameter was smaller when exposed to saponin treatments with concentrations of 50 and 100 µg·mL−1 (P < 0.0001). Lettuce leaves were also tested for the potential of E. coli to travel systemically to the edible portions of the plant. No E. coli was found to travel in this manner. It was concluded that steroidal saponins extracted from mojave yucca (Yucca schidigera) are not an acceptable compound for use in mitigation of E. coli in hydroponic fertilizer solution due to its ineffectiveness as a bactericide and its negative impact on lettuce growth.


2015 ◽  
Vol 25 (5) ◽  
pp. 645-650 ◽  
Author(s):  
Kellie J. Walters ◽  
Christopher J. Currey

Basil (Ocimum sp.) is the most popular fresh culinary herb. However, there is a lack of data characterizing the effect of hydroponic production systems and cultivars on the yield of hydroponically produced basil. Our objectives were to quantify productivity and characterize growth of basil cultivars grown in two hydroponic production systems. Thirty-five basil cultivars, including selections of sweet basil (O. basilicum), holy basil (O. tenuiflorum), and lemon basil (O. ×citriodorum and O. basilicum) were chosen. Seedlings were transplanted into nutrient film technique (NFT) or deep flow technique (DFT) systems and grown for 3 weeks. There was no interaction between basil cultivars and hydroponic production system. Fresh weight of plants grown in DFT systems was 2.6 g greater compared with plants grown in NFT systems. Basil cultivars differed greatly in fresh weight. In general, holy, lemon, and sweet basil cultivars produce moderate to high fresh weight, but vary greatly. Dissimilarly, bush (O. basilicum var. minimum), cinnamon (O. basilicum), large-leaf (O. basilicum), and thai basils (O. basilicum var. thyrisiflorum) produce moderate fresh weight and purple basil (O. basilicum) cultivars produce the least fresh weight. The yield of basil seems to be affected more by cultivar selection than hydroponic production system. Therefore, hydroponic basil producers should select basil cultivars based on flavor and yield, while hydroponic systems should be selected based on operational preferences.


2016 ◽  
Vol 6 (2) ◽  
pp. 101
Author(s):  
Imron Riyadi

<p>Effect of Kinetin and BAP to Growth and Development of<br />Somatic Embryos of Sago Palm (Metroxylon sagu Rottb.).<br />Imron Riyadi. Somatic embryos induction in sago palm<br />(Metroxylon sagu Rottb.) have succesfully developed. Kinds<br />and concentration of plant growth regulators (PGR’s)<br />influence to growth and development of somatic embryos.<br />The research was conducted to determine the optimal concentration<br />of BAP and kinetin for proliferation, maturation<br />and germination of sago palm somatic embryos. Cotyledonstage<br />of somatic embryo derived from shoot tip cultures<br />cultured on Modified Murashige-Skoog (MMS) with halfstrength<br />macro-salts and added with 30 g/l sucrose, 2 g/l<br />gelrite, 1 g/l activated charcoal. pH of media was adjusted at<br />5.6 before sterilized. The media were supplemented with<br />0.1-2.0 mg/l BAP and 0.1-2.0 mg/l kinetin in combination with<br />0.01 mg/l ABA each for supporting growth and development.<br />The cultures was incubated at 26+1oC under a 12-h<br />photoperiod with lighting providing an intensity 20 μmoles<br />photons/m2/second for 11 weeks with replication 10 times.<br />The results showed that the highest of somatic embryo<br />proliferation was achieved in a culture medium with BAP at<br />0.5 mg/l + 0.01 mg/l ABA with an expression rate of 94%, the<br />best maturation at 1.0 mg/l kinetin + 0.01 mg/l ABA with an<br />expression rate of 93.5% and the most germination at 2.0<br />mg/l kinetin + 0.01 mg/l ABA with an expression rate of<br />100%. Transfer of these germinants to gelled media without<br />PGR’s led to the development of normal plantlets.</p>


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Ainul Fuad ◽  
Hilda Karim ◽  
Muhiddin Palennari

Abstract. This Research and Development (R and D) concerns on learning media development regarding electronic magazine (e-magazine) for Plant Growth and Development subject. The R and D’s model used Analyze, Design, Develop, Implement, Evaluate (ADDIE). Validity test obtained from two expert validators and Practicality test obtained from the using of media by teacher and students. The Develop stage of this study conducted by validating e-magazine for further be implemented on SMAN 10 Gowa, Class of XII4 Natural Science. The number of subjects comprised of 29 students. Data collected from interview, observation and questionnaire. The result of validity test showed the average of media feasibility percentage is  82%. While the subject matter feasibility gained 81%. Both of these result showed very decent category which was meant that the media is feasible to be used. The average of teacher and students respond gained 83% and 81 % respectively toward positive respond. From the point of feasibility which had been evaluated by validity and practical test, this study can be conclude that emagazine is valid and practice learning media to be implemented in learning process. Keywords: e-magazine, validity, practicality, plant growth and development


2015 ◽  
Vol 58 ◽  
pp. 61-70 ◽  
Author(s):  
Paul B. Larsen

Ethylene is the simplest unsaturated hydrocarbon, yet it has profound effects on plant growth and development, including many agriculturally important phenomena. Analysis of the mechanisms underlying ethylene biosynthesis and signalling have resulted in the elucidation of multistep mechanisms which at first glance appear simple, but in fact represent several levels of control to tightly regulate the level of production and response. Ethylene biosynthesis represents a two-step process that is regulated at both the transcriptional and post-translational levels, thus enabling plants to control the amount of ethylene produced with regard to promotion of responses such as climacteric flower senescence and fruit ripening. Ethylene production subsequently results in activation of the ethylene response, as ethylene accumulation will trigger the ethylene signalling pathway to activate ethylene-dependent transcription for promotion of the response and for resetting the pathway. A more detailed knowledge of the mechanisms underlying biosynthesis and the ethylene response will ultimately enable new approaches to be developed for control of the initiation and progression of ethylene-dependent developmental processes, many of which are of horticultural significance.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 508e-508
Author(s):  
Bin Liu ◽  
Royal D. Heins

A concept of ratio of radiant to thermal energy (RRT) has been developed to deal with the interactive effect of light and temperature on plant growth and development. This study further confirms that RRT is a useful parameter for plant growth, development, and quality control. Based on greenhouse experiments conducted with 27 treatment combinations of temperature, light, and plant spacing, a model for poinsettia plant growth and development was constructed using the computer program STELLA II. Results from the model simulation with different levels of daily light integral, temperature, and plant spacing showed that the RRT significantly affects leaf unfolding rate when RRT is lower than 0.025 mol/degree-day per plant. Plant dry weight is highly correlated with RRT; it increases linearly as RRT increases.


Sign in / Sign up

Export Citation Format

Share Document