scholarly journals Climate change and the future occurrence of moorland wildfires in the Peak District of the UK

2010 ◽  
Vol 45 ◽  
pp. 105-118 ◽  
Author(s):  
K Albertson ◽  
J Aylen ◽  
G Cavan ◽  
J McMorrow
Geoforum ◽  
2019 ◽  
Vol 105 ◽  
pp. 158-167 ◽  
Author(s):  
Kristina Diprose ◽  
Chen Liu ◽  
Gill Valentine ◽  
Robert M. Vanderbeck ◽  
Katie McQuaid

2020 ◽  
Author(s):  
Claudia Gabriela Mayorga Adame ◽  
James Harle ◽  
Jason Holt ◽  
Artioli Yuri ◽  
Sarah Wakelin

<p>Climate change is expected to cause important changes in ocean physics, which will in turn have important effects on the marine ecosystems. The ReCICLE project (<strong>Resolving Climate Impacts on shelf and CoastaL seas Ecosystems</strong>) aims to identify and quantify the envelope of response to climate change of lower trophic level shelf-sea ecosystems and their functional interactions, in order to assess the vulnerability of ecosystem goods and services in the UK shelf seas. The central tool for this work is an ensemble of coupled hydrodynamic-biogeochemical ecosystem models NEMO-ERSEM Atlantic Margin Model configuration at 7 km horizontal resolution (AMM7), forced by different CIMP5 global climate change models to generate downscaled scenarios for future decades.</p><p>Changes in connectivity patterns are expected to affect coastal populations of marine organisms in shelf seas. Holt et al 2018 (GRL https://doi.org/10.1029/2018GL078878) showed the potential for radical reorganization of the North Sea circulation in earlier simulations. To assess this particular issue particle tracking experiments are carried out during two 10 year time slices, in the recent past (2000-2010) and in the future (2040-2050) in ensemble members of the ReCICLE AMM7 regional downscaling showing contrasting circulation patterns. Surface particles were uniformly seeded in the UK shelf seas every month and tracked for 30 days. The resulting particle trajectories are analysed with cluster analysis technics aiming to determine if persistent oceanographic boundaries re-arrange in the future climate scenarios. The ecological effects of circulation and water masses changes in the future ocean are discussed from a Lagrangian perspective.</p><p> </p>


2018 ◽  
Vol 61 (6) ◽  
pp. 521-535 ◽  
Author(s):  
Frithjof C. Küpper ◽  
Nicholas A. Kamenos

Abstract Marine biodiversity and ecosystem functioning – including seaweed communities – in the territorial waters of the UK and its Overseas Territories are facing unprecedented pressures. Key stressors are changes in ecosystem functioning due to biodiversity loss caused by ocean warming (species replacement and migration, e.g. affecting kelp forests), sea level rise (e.g. loss of habitats including salt marshes), plastic pollution (e.g. entanglement and ingestion), alien species with increasing numbers of alien seaweeds (e.g. outcompeting native species and parasite transmission), overexploitation (e.g. loss of energy supply further up the food web), habitat destruction (e.g. loss of nursery areas for commercially important species) and ocean acidification (e.g. skeletal weakening of ecosystem engineers including coralline algal beds). These stressors are currently affecting biodiversity, and their impact can be projected for the future. All stressors may act alone or in synergy. Marine biodiversity provides crucial goods and services. Climate change and biodiversity loss pose new challenges for legislation. In particular, there are implications of climate change for the designation and management of Marine Protected Areas and natural carbon storage by marine systems to help control the global climate system. The UK currently has legal obligations to protect biodiversity under international and European law.


2021 ◽  
Vol 39 ◽  
pp. 102285
Author(s):  
Fathin Haji Ismail ◽  
Mehdi Shahrestani ◽  
Maria Vahdati ◽  
Philippa Boyd ◽  
Sohrab Donyavi

2007 ◽  
Vol 11 (3) ◽  
pp. 1127-1143 ◽  
Author(s):  
C. L. Walsh ◽  
C. G. Kilsby

Abstract. The UKCIP02 climate change scenarios (2070–2100) suggest that the UK climate will become warmer (an overall increase of 2.5–3°C), with temperature increases being greater in the summer and autumn than in the spring and winter seasons. In terms of precipitation, winters are expected to become wetter and summers drier throughout the UK. The effect of changes in the future climate on flow regimes are investigated for the Atlantic salmon, Salmo salar, in a case study in an upland UK river. Using a hydraulic modelling approach, flows simulated across the catchment are assessed in terms of hydraulic characteristics (discharge per metre width, flow depths, flow velocities and Froude number). These, compared with suitable characteristics published in the literature for various life stages of Atlantic salmon, enable assessment of habitat suitability. Climate change factors have been applied to meteorological observations in the Eden catchment (north-west England) and effects on the flow regime have been investigated using the SHETRAN hydrological modelling system. High flows are predicted to increase by up to 1.5%; yet, a greater impact is predicted from decreasing low flows (e.g. a Q95 at the outlet of the study catchment may decrease to a Q85 flow). Reliability, Resilience and Vulnerability (RRV) analysis provides a statistical indication of the extent and effect of such changes on flows. Results show that future climate will decrease the percentage time the ideal minimum physical habitat requirements will be met. In the case of suitable flow depth for spawning activity at the outlet of the catchment, the percentage time may decrease from 100% under current conditions to 94% in the future. Such changes will have implications for the species under the Habitats Directive and for catchment ecological flow management strategies.


2005 ◽  
Vol 52 (5) ◽  
pp. 265-273 ◽  
Author(s):  
R.M. Ashley ◽  
D.J. Balmforth ◽  
A.J. Saul ◽  
J.D. Blanskby

Engineering infrastructure is provided at high cost and is expected to have a useful operational life of decades. However, it is clear that the future is uncertain. Traditional approaches to designing and operating urban storm drainage assets have relied on past performance of natural systems and the ability to extrapolate this performance, together with that of the assets across the usable lifetime. Whether or not climate change is going to significantly alter future weather patterns in Europe, it is clear that it is now incumbent on designers and operators of storm drainage systems to prepare for greater uncertainty in the effectiveness of storm drainage systems. A recent UK Government study considered the potential effects of climate and socio-economic change in the UK in terms of four future scenarios and what the implications are for the performance of existing storm drainage facilities. In this paper the modelling that was undertaken to try to quantify the changes in risk, together with the effectiveness of responses in managing that risk, are described. It shows that flood risks may increase by a factor of almost 30 times and that traditional engineering measures alone are unlikely to be able to provide protection.


2020 ◽  
Author(s):  
Alastair Clarke ◽  
Alexander Koch ◽  
Eric Robinson ◽  
Michelle Cipullo ◽  
Shane Latchman ◽  
...  

<p>The cost of future catastrophes will depend on changes to the hazard, exposure and vulnerability. Previous work has shown how climate change could affect the financial losses from damaged buildings by altering the frequency, severity and other characteristics of the hazard, but has not shown how socioeconomic trends could affect losses by altering the total number, spatial distribution and vulnerability of buildings.</p><p>We extend and apply urban scaling theory to model the spatiotemporal evolution of exposure using population projections that are consistent with Shared Socioeconomic Pathways (SSPs). The exposure sets are integrated with hazard catalogues that are consistent with Representative Concentration Pathways to give five views of UK windstorm risk for the year 2100.</p><p>SSPs describe five plausible futures where socioeconomic trends have made mitigation of, or adaptation to, climate change harder or easier. For example, one SSP describes a global panacea of co-operative, sustainable development while another describes a fragmented, under-developed world heavily-reliant on fossil fuels. AIR’s present-day exposure set, representative of all insurable properties in the UK, is perturbed by the SSPs to create an ensemble of plausible exposure sets for the year 2100. This ensemble is run through the AIR Extratropical Cyclone model for Europe with four stochastic event-based catalogues that represent the present hazard and three plausible future hazards posed by 1.5°C, 3°C and 4.5°C increases in global temperature.</p><p>Previous work found that global warming of 1.5°C to 4.5°C would increase the Average Annual Loss (AAL) from UK windstorms by 11% to 25%. We find that changes in exposure alone, dictated by the SSPs, lead to a wider range of changes in AAL. Urbanisation occurs under all SSPs resulting in exposure concentrating in cities and regional-level variation in AAL. Changes in AAL will further widen when integrated with the future hazard catalogues.</p><p>The results can help governments and public bodies to decide on a strategy for future urban and rural development, and how much to invest in protective measures against catastrophes. The framework can be extended to other perils in other countries adapting to climate change.</p>


2021 ◽  
Vol 70 (1) ◽  
pp. 3-6
Author(s):  
Vladimir Knapp

Our attitudes towards the risks of climate change must be reconsidered. We must recognise that the consequences will be huge and inevitable if we do not act now. Better to accept a few false alarms rather than be unprepared for a climate catastrophe. An outstanding example is the calculation by groups from Germany and the UK in 2009 (1) of the allowable emissions of CO2 before a 2°C increase in global temperature is exceeded. This leaves very little time, only 4 to 8 years, for mitigation measures. Nuclear fission now presents a formidable fleet of some 450 reactors benefitting from over 50 years of operational experience. Throughout decades of development, they reached outstanding safety standards, exceeding those of most renewable sources. However, the threat of climate change is calling this perspective into question as nuclear technology requires long-term stability of institutions. The future of nuclear fission will be determined after the expiration of the next decade with the development of hydro, solar and wind energy as replacements. For Croatia, in view of future climate insecurity, we cannot recommend the construction of a nuclear power plant built to operate from 2043 to 2083 (2) as a replacement for the outgoing NE Krško plant. Instead, we should intensify the development of our renewable resources.


2020 ◽  
Author(s):  
Rubén D. Manzanedo ◽  
Peter Manning

The ongoing COVID-19 outbreak pandemic is now a global crisis. It has caused 1.6+ million confirmed cases and 100 000+ deaths at the time of writing and triggered unprecedented preventative measures that have put a substantial portion of the global population under confinement, imposed isolation, and established ‘social distancing’ as a new global behavioral norm. The COVID-19 crisis has affected all aspects of everyday life and work, while also threatening the health of the global economy. This crisis offers also an unprecedented view of what the global climate crisis may look like. In fact, some of the parallels between the COVID-19 crisis and what we expect from the looming global climate emergency are remarkable. Reflecting upon the most challenging aspects of today’s crisis and how they compare with those expected from the climate change emergency may help us better prepare for the future.


Author(s):  
Laurie Essig

In Love, Inc., Laurie Essig argues that love is not all we need. As the future became less secure—with global climate change and the transfer of wealth to the few—Americans became more romantic. Romance is not just what lovers do but also what lovers learn through ideology. As an ideology, romance allowed us to privatize our futures, to imagine ourselves as safe and secure tomorrow if only we could find our "one true love" today. But the fairy dust of romance blinded us to what we really need: global movements and structural changes. By traveling through dating apps and spectacular engagements, white weddings and Disney honeymoons, Essig shows us how romance was sold to us and why we bought it. Love, Inc. seduced so many of us into a false sense of security, but it also, paradoxically, gives us hope in hopeless times. This book explores the struggle between our inner cynics and our inner romantic.


Sign in / Sign up

Export Citation Format

Share Document