REVIEW PAPER ON NON-DESTRUCTIVE TESTING AND THEIR ACCURACIES TO MEASURE THE MECHANICAL PROPERTIES OF CONCRETE

Author(s):  
Adan Bishar Hussein ◽  
Mohamed Abdi

This paper aims to respond to these concerns through the identification and explanation of the most popular and effective NDT approaches in concrete structures and also their accuracies. The fundamentals of the non-destructive test methods are discussed in terms of their capacity, limits, inspection techniques and interpretations. Factors that affect the performance of NDT an approach are discussed and means of mediate their influence was suggested. Ultrasonic pulse velocity and SONREB methods of Non-destructive test are showed in this paper as past experiments of NDT. NDT of concrete was found to be increasingly recognized as a way of measuring the strength, integrity, resilience and other properties of existing concrete structures, Perceptions of NDT inadequacy are attributed to lack of knowledge of the building materials and the NDT approaches themselves. The goal of this paper is to resolve these issues reviewing some articles already done and defining and discussing the most common popular NDT methods applied to concrete structures.

2020 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Tuba Bahtlı ◽  
Nesibe Sevde Özbay

In this study, the effects of finely-milled bronze and waste tire on the mechanical properties of concrete have been investigated. Approximately 2.5% and 5% by weight for each additive (bronze sawdust and waste tire) were added to dry concrete. The open porosity, density, compressive strength values of cured concrete have been determined. In addition, the Schmidt rebound hammer (SRH) and the ultrasonic pulse velocity (UPV) tests, which are non-destructive test methods, were applied. The microstructure and fracture surfaces of these materials were characterized by scanning electron microscopy (SEM). It was observed that the density of pure concrete was 2.35 g/cm3 while the density was 2.19 g/cm3 for a C+5%B+5%T material. Similarly, pure concrete had an almost three times better compressive strength and a two times better SRH value than those of the C+5%B+5%T material. The density and mechanical properties of concrete materials containing bronze and waste tire decreased due to micro crack formations, weak bonding and deep cracks forming especially between the concrete and additives.


2011 ◽  
Vol 243-249 ◽  
pp. 165-169 ◽  
Author(s):  
Iqbal Khan Mohammad

Nondestructive testing (NDT) is a technique to determine the integrity of a material, component or structure. The commonly NDT methods used for the concrete are dynamic modulus of elasticity and ultrasonic pulse velocity. The dynamic modulus of elasticity of concrete is related to the structural stiffness and deformation process of concrete structures, and is highly sensitive to the cracking. The velocity of ultrasonic pulses travelling in a solid material depends on the density and elastic properties of that material. Non-destructive testing namely, dynamic modulus of elasticity and ultrasonic pulse velocity was measured for high strength concrete incorporating cementitious composites. Results of dynamic modulus of elasticity and ultrasonic pulse velocity are reported and their relationships with compressive strength are presented. It has been found that NDT is reasonably good and reliable tool to measure the property of concrete which also gives the fair indication of the compressive strength development.


2018 ◽  
Vol 207 ◽  
pp. 01001
Author(s):  
Tu Quynh Loan Ngo ◽  
Yu-Ren Wang

In the construction industry, to evaluate the compressive strength of concrete, destructive and non-destructive testing methods are used. Non-destructive testing methods are preferable due to the fact that those methods do not destroy concrete samples. However, they usually give larger percentage of error than using destructive tests. Among the non-destructive testing methods, the ultrasonic pulse velocity test is the popular one because it is economic and very simple in operation. Using the ultrasonic pulse velocity test gives 20% MAPE more than using destructive tests. This paper aims to improve the ultrasonic pulse velocity test results in estimating the compressive strength of concrete using the help of artificial intelligent. To establish a better prediction model for the ultrasonic pulse velocity test, data collected from 312 cylinder of concrete samples are used to develop and validate the model. The research results provide valuable information when using the ultrasonic pulse velocity tests to the inputs data in addition with support vector machine by learning algorithms, and the actual compressive strengths are set as the target output data to train the model. The results show that both MAPEs for the linear and nonlinear regression models are 11.17% and 17.66% respectively. The MAPE for the support vector machine models is 11.02%. These research results can provide valuable information when using the ultrasonic pulse velocity test to estimate the compressive strength of concrete.


Author(s):  
Ahmed Lasisi ◽  
Obanishola Sadiq ◽  
Ibrahim Balogun

This work investigates the use of Non-destructive tests as a tool for monitoring the structural performance of concrete structures. The investigation encompassed four phases; the first of which involved the use of destructive and non-destructive mechanisms to assess concrete strength on cube specimens. The second phase research focused on site assessment for a twin engineering theatre located at the Faculty of Engineering, University of Lagos using rebound hammer and ultrasonic pulse velocity tester. The third phase was the use of linear regression analysis model with MATLAB to establish a relationship between calibrated strength as well as ultrasonic pulse velocities with their corresponding compressive strength values on cubes and values obtained from existing structures. Results show that the root-mean squared-R2 values for rebound hammer ranged between 0.275 and 0.742 while ultrasonic pulse velocity R2 values were in the range of 0.649 and 0.952 for air curing and water curing systems respectively. It initially appeared that the Ultrasonic pulse velocity was more suitable for predicting concrete strength than rebound hammer but further investigations showed that the latter was adequate for early age concrete while the former was more suited for aging concrete. Hence, a combined use is recommended in this work.


2021 ◽  
Vol 1164 ◽  
pp. 77-86
Author(s):  
Bogdan Bolborea ◽  
Sorin Dan ◽  
Claudiu Matei ◽  
Aurelian Gruin ◽  
Cornelia Baeră ◽  
...  

Developing a non-destructive method which delivers fast, accurate and non-invasive results regarding the concrete compressive strength, is an important issue, currently investigated by many researchers all over the world. Different methodologies, like using the simple non-destructive testing (NDT) or the fusion of different techniques approach, were taken into consideration in order to find the optimal, most suitable method. The purpose of this paper is to present a new approach in this direction. The methodology consists in predicting the concrete compressive strength through ultrasonic testing, for non-destructive determination of the dynamic and static moduli of elasticity. One important, basic assumption of the proposed methodology considers values provided by technical literature for concrete dynamic Poisson’s coefficient. The air-dry density was experimentally determined on concrete cores. The dynamic modulus of elasticity was also experimentally determined by using the ultrasonic pulse velocity (UPV) method on concrete cores. Further on, the static modulus of elasticity and the concrete compressive strength can be mathematically calculated, by using the previously mentioned parameters. The experimental procedures were performed on concrete specimens, namely concrete cores extracted from the raft foundation of a multistorey building; initially they were subjected to the specific NDT, namely ultrasonic testing, and the validation of the results and the proposed methodology derives from the destructive testing of the specimens. The destructive testing is generally recognized as the most trustable method. The precision of the proposed method, established with respect to the destructive testing, revealed a high level of confidence, exceeding 90% (as mean value). It was noticed that even the cores with compressive strength outside of mean range interval (minimum and maximum values) presented high rate of precision, not influencing the overall result. The high rate of accuracy makes this method a suitable research background for further investigations, in order to establish a reliable NDT methodology which could substitute the very invasive and less convenient, destructive method.


2021 ◽  
Vol 12 (4) ◽  
pp. 138
Author(s):  
Boğaçhan Akça ◽  
Süleyman Bahadır Keskin ◽  
Aysu Göçügenci

Non-destructive methods have many advantages over traditional test methods, especially since it does not damage the specimen, it can be used multiple times on the same specimen. These advantages also provide a great benefit in terms of following the property development in concrete as the same specimens are used which eliminates the variations related to the specimens. In this study, it is aimed to determine the damaged amount of concrete produced with different binders by electrical bulk resistivity, resonance frequency, and ultrasonic pulse velocity methods. Firstly, concretes containing different binders were produced, and along with the mechanical properties, ultrasonic wave velocity, resonance frequency, and electrical resistivity values of the produced concrete were determined at the 7, 28, and 90 days. Besides, the specimens were subjected to gradually increase compressive loads and non-destructive methods were used to estimate the extent of damage on specimens. It was attempted to establish a relationship between the damage on concrete specimens and the results obtained by non-destructive methods. Consequently, the compressive strength, electrical resistivity, ultrasonic pulse velocity and resonance frequency values of all specimens increased with the advancing age. It was concluded that the resonant frequency method is more successful than other methods in estimating the amount of damage in concrete.


2021 ◽  
Vol 1021 ◽  
pp. 45-54
Author(s):  
Mohammed Al-Helfi ◽  
Ali Allami

Non-Destructive methods have greater advantage in assessing the homogeneity, compressive strength, corrosion of rebars in concrete etc. of damaged structures. The aim of the present study is to assess the existing building, which is 41 year old, in the Technical Institute of Amara affiliated with the Southern Technical University, Maysan, Iraq. The research focus on the assessment of the concrete strength and the inspection of the damages in the building. Besides the visual inspection, the ultrasonic pulse velocity and schmidt hammer were used as a non-destructive test method for testing of 30 columns and 15 beams for a building consisting of three floors. The concrete compressive strength was estimated by using SonReb method. The equations proposed by Gasparik, 1984, Di Leo & Pascale, 1994, Arioglu et al., 1996, Cristofaro et al. (EXP), 2020 and Cristofaro et al (PW), 2020 were used for assessment the compressive strength of oncrete. The non-destructive test results indicated that the average strength of the structural elements greater than the design compressive strength of the tested elements. Therefore, the building can be considered structurally is safe.


2012 ◽  
Vol 496 ◽  
pp. 546-549
Author(s):  
Young S. Cho ◽  
Sang Woo Han ◽  
Hyun Suk Jang ◽  
Sang Ki Baek ◽  
Seong Uk Hong

The concrete structures have the quite close linkage on the human life and it is used for a long time. Therefore, the importance for structure safety had been being continuously increased. The general method in order to measure concrete crack is the non destructive inspection. This method is known efficiently when it is difficult to check the crack through the eyes because of not exposed. Hence, the purpose of this study is measuring a crack depth of concrete by using the ultrasonic pulse velocity. And the Pundit that is one among the supersonic equipment was used in order to proceed with this research. In the first place used the existing methods (Tc-To, BS, T, close range bypass wave) in order to estimate crack depth of concrete. And then new method that the BS method and the T method are combined make an attempt to analyze the error.


2018 ◽  
Vol 792 ◽  
pp. 166-169
Author(s):  
Yu Ren Wang ◽  
Loan T.Q. Ngo ◽  
Yi Fan Shih ◽  
Yen Ling Lu ◽  
Yi Ming Chen

SONREB method is a non-destructive testing (NDT) method for estimating the concrete compressive strength. It is conducted by combining two popular NDT methods: ultrasonic pulse velocity (UPV) test and rebound hammer (RH) test. Several researches have been attempted to find the correlation of the different testing method data with actual compressive strength. This research proposes a new Artificial Intelligence based approach, Artificial Neural Networks (ANNs), to estimate the concrete compressive strength using the UPV and RH test data. Data from a total of 315 cylinder concrete samples are collected to develop and validate the ANFIS prediction model. The model prediction results are compared with actual compressive strength using mean absolute percentage error (MAPE). With the adaption of ANFIS, the estimation error of SONREB test can be reduced to 5.98% (measured by MAPE).


Sign in / Sign up

Export Citation Format

Share Document