Predictability of concrete damage level by non-destructive test methods

2021 ◽  
Vol 12 (4) ◽  
pp. 138
Author(s):  
Boğaçhan Akça ◽  
Süleyman Bahadır Keskin ◽  
Aysu Göçügenci

Non-destructive methods have many advantages over traditional test methods, especially since it does not damage the specimen, it can be used multiple times on the same specimen. These advantages also provide a great benefit in terms of following the property development in concrete as the same specimens are used which eliminates the variations related to the specimens. In this study, it is aimed to determine the damaged amount of concrete produced with different binders by electrical bulk resistivity, resonance frequency, and ultrasonic pulse velocity methods. Firstly, concretes containing different binders were produced, and along with the mechanical properties, ultrasonic wave velocity, resonance frequency, and electrical resistivity values of the produced concrete were determined at the 7, 28, and 90 days. Besides, the specimens were subjected to gradually increase compressive loads and non-destructive methods were used to estimate the extent of damage on specimens. It was attempted to establish a relationship between the damage on concrete specimens and the results obtained by non-destructive methods. Consequently, the compressive strength, electrical resistivity, ultrasonic pulse velocity and resonance frequency values of all specimens increased with the advancing age. It was concluded that the resonant frequency method is more successful than other methods in estimating the amount of damage in concrete.

2020 ◽  
Vol 841 ◽  
pp. 119-123
Author(s):  
Noel Díaz González ◽  
Luis Alberto González Luna ◽  
Elia Mercedes Alonso Guzmán ◽  
Wilfrido Martínez Molina ◽  
Hugo Luis Chávez García ◽  
...  

The use of better materials is essential for the development of a country, that is why in this work we analyze a mixture of cement-based mortar with an addition of mucilage from a plant called Maralfalfa, said plant is used as feed for cattle and it is thought that its hydrate content can improve the water-cement reaction. Two mixtures were made, one control and another with the addition. The material used was: volcanic sand from Michoacán, cement CPC 30R RS, drinking water and the addition of mucilage. Cubic specimens (5x5x5 cm), prismatic specimens (4x4x16 cm) and briquettes were made, which were tested at 7, 14, 21, 28, 45 and 70 days of age. The tests performed were non-destructive (density, ultrasonic pulse rate and electrical resistivity) and destructive (simple compression, flexion and tension). The density results indicate that the mixture with addition densifies the cement matrix, the ultrasonic pulse velocity results are very similar between the mixtures, the results of electrical resistivity indicate that the control mixture is slightly higher. In terms of simple compression and flexion, it is indicated that the mixture with the addition was higher than the control, whereas the voltage results indicate the opposite. In addition, it was found that the addition retards the setting time of the mixture.


2020 ◽  
Vol 841 ◽  
pp. 198-202
Author(s):  
Judith Alejandra Velázquez Perez ◽  
Elia Mercedes Alonso Guzmán ◽  
Wilfrido Martínez Molina ◽  
Hugo Luis Chávez García ◽  
Ioscany Talingo Moreno ◽  
...  

This research is focused on cement pastes with w/c ratio of 0.5. The cementing material is Portland cement type II. The main aim is to estimate the mechanical properties based on non-destructive tests such as ultrasonic pulse velocity, and electrical resistivity by a correlation with the destructive tests such as compressive strength, flexural strength, and tensile strength at ages of 3,7,14,21,28 and 45 days. The results suggest that there is a good correlation between evaluated properties.


Author(s):  
Adan Bishar Hussein ◽  
Mohamed Abdi

This paper aims to respond to these concerns through the identification and explanation of the most popular and effective NDT approaches in concrete structures and also their accuracies. The fundamentals of the non-destructive test methods are discussed in terms of their capacity, limits, inspection techniques and interpretations. Factors that affect the performance of NDT an approach are discussed and means of mediate their influence was suggested. Ultrasonic pulse velocity and SONREB methods of Non-destructive test are showed in this paper as past experiments of NDT. NDT of concrete was found to be increasingly recognized as a way of measuring the strength, integrity, resilience and other properties of existing concrete structures, Perceptions of NDT inadequacy are attributed to lack of knowledge of the building materials and the NDT approaches themselves. The goal of this paper is to resolve these issues reviewing some articles already done and defining and discussing the most common popular NDT methods applied to concrete structures.


2020 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Tuba Bahtlı ◽  
Nesibe Sevde Özbay

In this study, the effects of finely-milled bronze and waste tire on the mechanical properties of concrete have been investigated. Approximately 2.5% and 5% by weight for each additive (bronze sawdust and waste tire) were added to dry concrete. The open porosity, density, compressive strength values of cured concrete have been determined. In addition, the Schmidt rebound hammer (SRH) and the ultrasonic pulse velocity (UPV) tests, which are non-destructive test methods, were applied. The microstructure and fracture surfaces of these materials were characterized by scanning electron microscopy (SEM). It was observed that the density of pure concrete was 2.35 g/cm3 while the density was 2.19 g/cm3 for a C+5%B+5%T material. Similarly, pure concrete had an almost three times better compressive strength and a two times better SRH value than those of the C+5%B+5%T material. The density and mechanical properties of concrete materials containing bronze and waste tire decreased due to micro crack formations, weak bonding and deep cracks forming especially between the concrete and additives.


2021 ◽  
Vol 13 (4) ◽  
pp. 1881
Author(s):  
Mei-Yu Xuan ◽  
Yi Han ◽  
Xiao-Yong Wang

This study examines the hydration–mechanical–autogenous shrinkage–durability–sustainability properties of ternary composites with limestone filler (LF) and ground-granulated blast furnace slag (BFS). Four mixtures were prepared with a water/binder ratio of 0.3 and different replacement ratios varying from 0 to 45%. Multiple experimental studies were performed at various ages. The experimental results are summarized as follows: (1) As the replacement levels increased, compressive strength and autogenous shrinkage (AS) decreased, and this relationship was linear. (2) As the replacement levels increased, cumulative hydration heat decreased. At the age of 3 and 7 days, there was a linear relationship between compressive strength and cumulative hydration heat. (3) Out of all mixtures, the ultrasonic pulse velocity (UPV) and electrical resistivity exhibited a rapid increase in the early stages and tended to slow down in the latter stages. There was a crossover of UPV among various specimens. In the later stages, the electrical resistivity of ternary composite specimens was higher than plain specimens. (4) X-ray diffraction (XRD) results showed that LF and BFS have a synergistic effect. (5) With increasing replacement ratios, the CO2 emissions per unit strength reduced, indicating the sustainability of ternary composites.


2021 ◽  
Vol 318 ◽  
pp. 03004
Author(s):  
AbdulMuttalib I. Said ◽  
Baqer Abdul Hussein Ali

This paper has carried out an experimental program to establish a relatively accurate relation between the ultrasonic pulse velocity (UPV) and the concrete compressive strength. The program involved testing concrete cubes of (100) mm and prisms of (100×100×300) cast with specified test variables. The samples are tested by using ultrasonic test equipment with two methods, direct ultrasonic pulse (DUPV) and surface (indirect) ultrasonic pulse (SUPV) for each sample. The obtained results were used as input data in the statistical program (SPSS) to predict the best equation representing the relation between the compressive strength and the ultrasonic pulse velocity. In this research 383 specimens were tested, and an exponential equation is proposed for this purpose. The statistical program has been used to prove which type of UPV is more suitable, the (SUPV) test or the (DUPV) test, to represent the relation between the ultrasonic pulse velocity and the concrete compressive strength. In this paper, the effect of salt content on the connection between the ultrasonic pulse velocity and the concrete compressive strength has also been studied.


2011 ◽  
Vol 243-249 ◽  
pp. 165-169 ◽  
Author(s):  
Iqbal Khan Mohammad

Nondestructive testing (NDT) is a technique to determine the integrity of a material, component or structure. The commonly NDT methods used for the concrete are dynamic modulus of elasticity and ultrasonic pulse velocity. The dynamic modulus of elasticity of concrete is related to the structural stiffness and deformation process of concrete structures, and is highly sensitive to the cracking. The velocity of ultrasonic pulses travelling in a solid material depends on the density and elastic properties of that material. Non-destructive testing namely, dynamic modulus of elasticity and ultrasonic pulse velocity was measured for high strength concrete incorporating cementitious composites. Results of dynamic modulus of elasticity and ultrasonic pulse velocity are reported and their relationships with compressive strength are presented. It has been found that NDT is reasonably good and reliable tool to measure the property of concrete which also gives the fair indication of the compressive strength development.


2021 ◽  
Vol 12 (2) ◽  
pp. 39
Author(s):  
Tuba Bahtli ◽  
Nesibe Sevde Ozbay

Studies in the literature show that the physical and mechanical properties of concrete could be improved by the incorporation of different kinds of industrial waste, including waste tire rubber and tire steel. Recycling of waste is important for economic gain and to curb environmental problems. In this study, finely ground CuAl10Ni bronze is used to improve the physical and mechanical properties, and freeze-thaw resistances of C30 concrete. The density, cold crushing strength, 3-point bending strength, elastic modulus, toughness, and freeze-thaw resistances of concrete are determined. In addition, the Schmidt Rebound Hammer (SRH) and the ultrasonic pulse velocity (UPV) tests, which are non-destructive test methods, are applied. SEM/EDX analyses are also carried out. It is noted that a more compacted structure of concrete is achieved with the addition of bronze sawdust. Then higher density and strength values are obtained for concretes that are produced by bronze addition. In addition, concretes including bronze sawdust generally show higher toughness due to high plastic energy capacities than pure concrete.


2017 ◽  
Vol 902 ◽  
pp. 9-13
Author(s):  
Rosalía Ruiz Ruiz ◽  
Elia Mercedes Alonso Guzmán ◽  
Wilfrido Martínez Molina ◽  
Hugo Luis Chávez García ◽  
Judith Alejandra Velázquez Perez

Cement industry is responsible of 5-7% of CO2 emissions to the atmosphere. This is preoccupant because this is one of the greenhouse effect gases which cause global warming. Pozzolanic material incorporation in cement mortars elaboration represents a good alternative to partially substitute cement, since its chemical composition could contribute to improvement of its durability and mechanical characteristics. In this research, mortars with pozzolanic substitutions are evaluated through non-destructive tests as: capillary absorption, electrical resistivity, and ultrasonic pulse velocity to the age of 1000 days. The results suggested that the incorporation of pozzolanic material as partial substitutes of Portland cement increases the mortars properties mainly in substitutions of CBC 20%, PN 10, and 30%.


2018 ◽  
Vol 207 ◽  
pp. 01001
Author(s):  
Tu Quynh Loan Ngo ◽  
Yu-Ren Wang

In the construction industry, to evaluate the compressive strength of concrete, destructive and non-destructive testing methods are used. Non-destructive testing methods are preferable due to the fact that those methods do not destroy concrete samples. However, they usually give larger percentage of error than using destructive tests. Among the non-destructive testing methods, the ultrasonic pulse velocity test is the popular one because it is economic and very simple in operation. Using the ultrasonic pulse velocity test gives 20% MAPE more than using destructive tests. This paper aims to improve the ultrasonic pulse velocity test results in estimating the compressive strength of concrete using the help of artificial intelligent. To establish a better prediction model for the ultrasonic pulse velocity test, data collected from 312 cylinder of concrete samples are used to develop and validate the model. The research results provide valuable information when using the ultrasonic pulse velocity tests to the inputs data in addition with support vector machine by learning algorithms, and the actual compressive strengths are set as the target output data to train the model. The results show that both MAPEs for the linear and nonlinear regression models are 11.17% and 17.66% respectively. The MAPE for the support vector machine models is 11.02%. These research results can provide valuable information when using the ultrasonic pulse velocity test to estimate the compressive strength of concrete.


Sign in / Sign up

Export Citation Format

Share Document