scholarly journals Which way forward in the quest for drought tolerance in perennial ryegrass?

Author(s):  
C. Matthew ◽  
A. Van der Linden ◽  
S. Hussain ◽  
H.S. Easton ◽  
J.-H B. Hatier ◽  
...  

Pasture moisture stress for "summer" (November to March) was calculated for five main pastoral regions of New Zealand, and 9 or 10 years' weather data were modelled in each case. Amelioration of water deficit with deeper rooting, stronger plant tissue osmotic potential for greater water extraction, or increased photosynthetic water use efficiency (WUE) was also modelled. Regional mean summer moisture deficits ranged from 34 mm in Taranaki to 447 mm in Canterbury. For a 10-cm increase in rooting depth, the model predicted an additional 16 mm water extraction. Increased plant osmotic potential was predicted to only slightly increase water extraction and paradoxically reduce yield. The assumed increase in photosynthetic WUE improved production by 240 kg DM ha-1 for the same water use. Drought tolerance traits exhibited by a range of ryegrass cultivars were measured in a series of glasshouse experiments and the potential to improve New Zealand ryegrass drought tolerance by introgression with germplasm originating from North Africa was assessed. North African germplasm possesses a trait of deep rootedness but has low summer productivity as a soil moisture conservation strategy and a high percentage of tillers flowering, so initial evaluations of this material for suitability for use in New Zealand are not promising. Ryegrass cultivars incorporating germplasm of Spanish origin appear to maintain summer production with enhanced WUE. Keywords: drought tolerance, root depth, Lolium perenne, perennial ryegrass, water deficit

2014 ◽  
Vol 41 (11) ◽  
pp. 1078 ◽  
Author(s):  
Eric S. Ober ◽  
Peter Werner ◽  
Edward Flatman ◽  
William J. Angus ◽  
Peter Jack ◽  
...  

The ability of roots to extract soil moisture is critical for maintaining yields during drought. However, the extent of genotypic variation for rooting depth and drought tolerance in Northern European wheat (Triticum aestivum L.) germplasm is not known. The objectives of this study were to measure genotypic differences in root activity, test relationships between water use and yield, examine trade-offs between yield potential and investment of biomass in deep roots, and identify genotypes that contrast in deep root activity. A diverse set of 21 wheat genotypes was evaluated under irrigated and managed drought conditions in the field. Root activity was inferred from patterns of water extraction from the soil profile. Genotypes were equally capable of exploiting soil moisture in the upper layers, but there were significant genotypic differences in rates of water uptake after anthesis in deeper soil layers. For example, across the three years of the study, the variety Xi19 showed consistently deeper root activity than the variety Spark; Xi19 also showed greater drought tolerance than Spark. There were positive correlations between water extraction from depth and droughted yields and drought tolerance, but correlations between deep water use and yield potential were not significant or only weakly negative. With appropriate screening tools, selection for genotypes that can better mine deep soil water should improve yield stability in variable rainfall environments.


1984 ◽  
Vol 103 (1) ◽  
pp. 189-199 ◽  
Author(s):  
M. J. Goss ◽  
K. R. Howse ◽  
Judith M. Vaughan-Williams ◽  
M. A. Ward ◽  
W. Jenkins

SummaryIn each of the years from September 1977 to July 1982 winter wheat was grown on one or more of three clay soil sites (clay content 35–55%) in Oxfordshire where the climate is close to the average for the area of England growing winter cereals.The effects on crop water use of different soil management practices, including ploughing, direct drilling and subsoil drainage, are compared. Cultivation treatment had little effect on the maximum depth of water extraction, which on average in these clay soils was 1·54 m below the soil surface. Maximum soil water deficit was also little affected by cultivation; the maximum recorded value was 186±7·6 mm. Subsoil drainage increased the maximum depth of water extraction by approximately 15 cm and the maximum soil water deficit by about 17 mm.Generally soil management had little effect on either total water use by the crop which was found to be close to the potential evaporation estimated by the method of Penman, or water use efficiency which for these crops was about 52 kg/ha par mm water used.Results are discussed in relation to limitations to potential yield.


2003 ◽  
Vol 43 (8) ◽  
pp. 907 ◽  
Author(s):  
R. E. White ◽  
B. P. Christy ◽  
A. M. Ridley ◽  
A. E. Okom ◽  
S. R. Murphy ◽  
...  

Eleven experimental sites in the Sustainable Grazing Systems (SGS) national experiment were established in the high rainfall zone (HRZ, >600 mm/year) of Western Australia, Victoria and New South Wales to measure components of the water balance, and pathways of water movement, for a range of pastures from 1997 to 2001. The effect of widely spaced river red gums (Eucalyptus camaldulensis) in pasture, and of belts of plantation blue gums (E. globulus), was studied at 2 of the sites. The soil types tested ranged from Kurosols, Chromosols and Sodosols, with different subsoil permeabilities, to Hydrosols and Tenosols. The pasture types tested were kikuyu (Pennisetum clandestinum), phalaris (Phalaris aquatica), redgrass (Bothriochloa macra) and annual ryegrass (Lolium rigidum), with subterranean clover (Trifolium subterraneum) included. Management variables were set stocking v. rotational grazing, adjustable stocking rates, and level of fertiliser input. Soil, pasture and animal measurements were used to set parameters for the biophysical SGS pasture model, which simulated the long-term effects of soil, pasture type, grazing method and management on water use and movement, using as inputs daily weather data for 31 years from selected sites representing a range of climates. Measurements of mean maximum soil water deficit Sm were used to estimate the probability of surplus water occurring in winter, and the average amount of this surplus, which was highest (97–201 mm/year) for pastures in the cooler, winter-rainfall dominant regions of north-east and western Victoria and lowest (3–11 mm/year) in the warmer, lower rainfall regions of the eastern Riverina and Esperance, Western Australia. Kikuyu in Western Australia achieved the largest increase in Sm compared with annual pasture (55–71 mm), while increases due to phalaris were 18–45 mm, and those of native perennials were small and variable. Long-term model simulations suggested rooting depth was crucial in decreasing deep drainage, to about 50 mm/year for kikuyu rooting to 2.5 m, compared with 70–200 mm/year for annuals rooting to only 0.8 m. Plantation blue gums dried the soil profile to 5.25 m by an average of 400 mm more than kikuyu pasture, reducing the probability of winter surplus water to zero, and eliminating drainage below the root zone. Widely spaced river red gums had a much smaller effect on water use, and would need to number at least 14 trees per hectare to achieve extra soil drying of about 50 mm over a catchment. Soil type affected water use primarily through controlling the rooting depth of the vegetation, but it also changed the partitioning of surplus water between runoff and deep drainage. Strongly duplex soils such as Sodosols shed 50% or more surplus water as runoff, which is important for flushing streams, provided the water is of good quality. Grazing method and pasture management had only a marginal effect in increasing water use, but could have a positive effect on farm profitability through increased livestock production per hectare and improved persistence of perennial species.


2006 ◽  
Vol 46 (3) ◽  
pp. 327 ◽  
Author(s):  
G. N. Mundy ◽  
K. L. Greenwood ◽  
K. B. Kelly ◽  
S. M. Austin ◽  
K. E. Dellow

A field experiment was conducted from January 2000 for 2.5 years, at the Department of Primary Industries, Kyabram, in northern Victoria. The experiment determined the effect of soil modification, with and without subsurface drainage, on the yield and water use of tall fescue (Festuca arundinacea), lucerne (Medicago sativa), phalaris (Phalaris aquatica) and perennial ryegrass (Lolium perenne) under 2 irrigation frequencies. The soil was a red-brown earth. The forages were spray irrigated from August to May when evaporation minus rainfall (E – R) reached 45–50 mm (frequent) or 90–100 mm (infrequent). The depth of irrigation water applied was equal to the soil water deficit (SWD) of each treatment, measured before each irrigation. Soil modification did not change the plant available water content of the soil (about 115 mm). The apparent depth of water extraction was initially different between soil management treatments but, over time, these differences disappeared. There were consistent differences between the forage species in the apparent depth of soil water extraction. Lucerne extracted water from deeper in the soil than phalaris followed by tall fescue and then perennial ryegrass. In general, the infrequently irrigated forages extracted water from deeper in the soil than did the frequently irrigated forages. The frequently irrigated treatments received slightly more water than did the infrequent treatments. The depth of water applied to the control and modified soil was similar, whereas the drained soils received more water than did the undrained treatments. There were differences between the forages in the depth of water applied, with lucerne receiving up to about 1500 mm/year and the grasses about 1100 to 1300 mm/year. Water use efficiency [kg dry matter (DM)/ha.mm] of the forages ranged from 14 to 18 kg DM/ha.mm in 2000–01 and up to 24 kg DM/ha.mm in 2001–02. The relatively high water use efficiencies were largely due to the high yields achieved, as water use was similar to that of district farms.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 531a-531
Author(s):  
Eric H. Simonne ◽  
Joseph M. Kemble ◽  
Doyle A. Smittle

A TurboPascal computer program was developed to calculate daily water budgets and schedule irrigations. Daily water use (di) is calculated as pan evaporation (Ep) times a crop factor (CFi), where i is crop age. The water balance uses a dynamic rooting depth, the soil water holding capacity (SWC) and rainfall data (Ri). di is added to the cumulative water use (Di-1) and Ri is subtracted from Di. An irrigation in the amount of Di is recommended when Di approximates allowable water use. The program cart be adapted to most crop and soil types, and can be used for on-time irrigation scheduling or for simulating water application using past or projected weather data. This program should increase the acceptance of modem scheduling irrigation techniques by farmers and consultants. Additionally, this program may have application in an overall water management programs for farms, watersheds or other areas where water management is required.


2005 ◽  
Vol 96 (1) ◽  
pp. 101-108 ◽  
Author(s):  
HUGO A. PINHEIRO ◽  
FÁBIO M. DaMATTA ◽  
AGNALDO R. M. CHAVES ◽  
MARCELO E. LOUREIRO ◽  
CARLOS DUCATTI

2020 ◽  
Vol 11 ◽  
Author(s):  
Jens Berger ◽  
Raju Pushpavalli ◽  
Christiane Ludwig ◽  
Sylvia Parsons ◽  
Fatma Basdemir ◽  
...  

There is growing interest in widening the genetic diversity of domestic crops using wild relatives to break linkage drag and/or introduce new adaptive traits, particularly in narrow crops such as chickpea. To this end, it is important to understand wild and domestic adaptive differences to develop greater insight into how wild traits can be exploited for crop improvement. Here, we study wild and domestic Cicer development and water-use over the lifecycle, measuring responses to reproductive water deficit, a key Mediterranean selection pressure, using mini-lysimeters (33 L round pots) in common gardens under contrasting water regimes. Wild and domestic Cicer were consistently separated by later phenology, greater water extraction and lower water use efficiency (WUE) and harvest index in the former, and much greater yield-responsiveness in the latter. Throughout the lifecycle, there was greater vegetative investment in wild, and greater reproductive investment in domestic Cicer, reflected in root and harvest indices, rates of leaf area, and pod growth. Domestic WUE was consistently greater than wild, suggesting differences in water-use regulation and partitioning. Large wild-domestic differences revealed in this study are indicative of evolution under contrasting selection pressures. Cicer domestication has selected for early phenology, greater early vigor, and reproductive efficiency, attributes well-suited to a time-delimited production system, where the crop is protected from grazing, disease, and competition, circumstances that do not pertain in the wild. Wild Cicer attributes are more competitive: higher peak rates of leaf area growth, greater ad libitum water-use, and extraction under terminal drought associated with greater vegetative dry matter allocation, leading to a lower reproductive capacity and efficiency than in domestic chickpea. These traits strengthen competitive capacity throughout the growing season and are likely to facilitate recovery from grazing, two significant selection pressures faced by wild, rather than domesticated Cicer. While increased water extraction may be useful for improving chickpea drought tolerance, this trait must be evaluated independently of the other associated wild traits. To this end, the wild-domestic populations have been developed.


1979 ◽  
Vol 92 (2) ◽  
pp. 375-381 ◽  
Author(s):  
Joyce R. A. Steckel ◽  
D. Gray

SummaryIn field experiments made over 3 years Pentland Crown and Majestic gave, in general, higher total and dry matter yields from plots given no supplementary water and protected from rainfall throughout growth than King Edward or Maris Piper. However, on plots kept at or near to field capacity all varieties gave similar yields. Pentland Crown and Majestic were deeper rooting than the other two varieties at the time of tuber formation (when the production of new roots ceased) but the differences in rooting depth (ca. 100 mm) between the varieties were small. Except for the top 150 mm of soil, differences in water extraction between the varieties throughout the profile were also small. Neither these differences in water extraction nor the differences in rooting depth could be related consistently to the differences in varietal yield response between ‘wet’ and ‘dry’ plots.


Sign in / Sign up

Export Citation Format

Share Document