scholarly journals Reducing nitrous oxide emissions from grazed winter forage crops

Author(s):  
T.J. Van der Weerden ◽  
T.M. Styles

Wintering cows on forage crops leads to urine being excreted onto wet, compacted soils. This is likely to result in significant gaseous emissions of nitrous oxide (N2O), which may be reduced through strategic applications of nitrification inhibitors. A study was established on a winter swede crop to (i) determine N2O emissions from compacted soil treated with cattle urine, and (ii) quantify the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), in reducing these emissions. Nitrous oxide emissions from the urine + compacted soil were significantly greater (P < 0.001) than from compacted soil without urine, with 3.2% of the urine-N being lost as N2O. DCD application significantly reduced this loss (P < 0.05) to 0.8% of the applied urine-N. Expressed at a paddock scale, total N2O emissions from the winter-grazed swede crop were 7.9 kg N ha-1, which was reduced to 3.4 kg N ha-1 when DCD was applied. Keywords: urine, dicyandiamide, nitrification inhibitor, soil compaction, nitrous oxide.

Author(s):  
S.M. Thomas ◽  
G.S. Francis ◽  
H.E. Barlow ◽  
M.H. Beare ◽  
L.A. Trimmer ◽  
...  

Grazing of winter forage crops can cause extensive compaction of soils that may reduce re-growth of crops and lead to large emissions of nitrous oxide (N2O). A field trial was undertaken to investigate the effects of cattle grazing at three soil moisture contents on N2O emissions and dry matter (DM) production of a winter forage crop established by intensive (IT), minimum (MT), or no tillage (NT) practices. A multi-grazing triticale (cv. Doubletake) was sown in the main tillage plots in March 2003. In June, the tillage plots (three replicates) were each divided into six split plots and additional treatments were imposed: simulated treading (+/-); soil moisture at treading (< field capacity (FC); FC; and >FC); and urine (+/-). Tillage practice and soil moisture content at treading affected soil compaction. The greatest increase in surface soil (0-7.5 cm) bulk density occurred in IT plots treaded at >FC. Treading wet soil greatly increased (up to 8 times) the amount of N2O emitted. The highest cumulative N2O emissions were from IT (14.9 kg N/ha) and MT (12.7 kg N/ha) urine-applied plots treaded at >FC. There was no difference in N2O emitted from treaded FC. Treading at FC also caused a significant loss of DM production in the IT plots but not in the MT plots. DM production in the NT plots was unaffected by treading. Establishing winter forage crops by direct drilling may be an important management option to mitigate N2O emissions and maintain high DM production of grazed forages, as will avoiding grazing when soils are wet. Keywords: forage crops, grazing, nitrous oxide, soil compaction, tillage, urine


Soil Research ◽  
2017 ◽  
Vol 55 (6) ◽  
pp. 547 ◽  
Author(s):  
Terry J. Rose ◽  
Stephen G. Morris ◽  
Peter Quin ◽  
Lee J. Kearney ◽  
Stephen Kimber ◽  
...  

Although there is growing evidence that the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) can lower soil nitrous oxide (N2O) emissions in temperate environments, there is little evidence of its efficacy in subtropical or tropical environments where temperatures and rainfall intensities are typically higher. We investigated N2O emissions in field-grown aerobic rice in adjacent fields in the 2013–14 and 2014–15 seasons in a subtropical environment. Crops were topdressed with 80 kg nitrogen (N) ha–1 before rainfall, as either urea, urea + DMPP (at 1.6 kg DMPP t–1 urea: ‘urea-DMPP’) or a blend of 50% urea and 50% urea-DMPP in the 2013–14 season, and urea, urea-DMPP or polymer (3 month)-coated urea (PCU) in the 2014–15 season. DMPP-urea significantly (P < 0.05) lowered soil N2O emissions in the 2013–14 season during the peak flux period after N fertiliser application, but had no effect in 2014–15. The mean cumulative N2O emissions over the entire growing period were 190 g N2O-N ha–1 in 2013–14 and 413 g N2O-N ha–1 in 2014–15, with no significant effect of DMPP or PCU. Our results demonstrate that DMPP can lower N2O emissions in subtropical, aerobic rice during peak flux events following N fertiliser application in some seasons, but inherent variability in climate and soil N2O emissions limited the ability to detect significant differences in cumulative N2O flux over the seasonal assessment. A greater understanding of how environmental and soil factors impact the efficacy of DMPP in the subtropics is needed to formulate appropriate guidelines for its use commercially.


2008 ◽  
Vol 48 (2) ◽  
pp. 160 ◽  
Author(s):  
L. C. Smith ◽  
C. A. M. de Klein ◽  
R. M. Monaghan ◽  
W. D. Catto

A study was conducted in Southland, New Zealand to: (i) measure nitrous oxide (N2O) emissions and nitrate (NO3–-N) leaching losses from a cattle-grazed, winter forage crop; and (ii) quantify the effect of dicyandiamide (DCD) in reducing these losses. Drainage losses were measured for 12 months (December 2005–November 2006) from a December-sown kale crop using 12 hydrologically isolated drainage plots at the Woodlands Research Station. N2O emissions were measured for 6 months (June–November) following simulated grazing of the crop in mid-June. N2O emissions from the bare ground following grazing of the crop amounted to 3.6 kg nitrogen (N)/ha for the winter–spring period. This figure is higher than that measured for pasture on the same soil type over a similar period. DCD application significantly reduced N2O emissions for the whole crop area by 25% over this period and reduced the N2O emission factor for urine by 54%. DCD application increased the length of time mineral N (0–10 cm soil depth) was maintained in the ammonium form and significantly reduced soil NO3–-N levels for 6 weeks following the simulated grazing. Annual NO3–-N losses in drainage under this winter forage crop were relatively high at 79 kg N/ha.year, with the majority of this (67%) being lost over the wet summer months (December–January rainfall 434 mm or 200% of normal) during crop growth. The application of DCD following the grazing resulted in a 47% decrease in NO3–-N leached over the winter–spring period (26 kg N/ha v. 14 kg N/ha) with this equating to a 29% decrease over the full 12-month measurement period. This study suggested that winter forage crops are major contributors to N losses from livestock farming systems in Southland and that DCD application following the grazing of such crops by cattle can significantly reduce N2O emissions and leaching N losses.


Soil Research ◽  
2012 ◽  
Vol 50 (3) ◽  
pp. 188 ◽  
Author(s):  
Iris Vogeler ◽  
Pierre Beukes ◽  
Alvaro Romera ◽  
Rogerio Cichota

Nitrous oxide (N2O) emissions from agriculture are generally estimated using default IPCC emission factors (EFs) despite the large variation in measured EFs. We used a classification and regression tree (CART) analysis to segregate measured EFs from direct emissions from urine patches and fertiliser and effluent applications, based on temporal and site-specific factors. These segregated EFs were linked to simulations from the DairyNZ Whole Farm Model to obtain N2O emissions for a typical pasture-based dairy farm in New Zealand. The N2O emissions from urine patches, dung pads, and fertiliser and effluent application, as well as from indirect sources, were aggregated to obtain total N2O emissions for the farm-scale. The results, based on segregated EFs, were compared with those obtained using New Zealand-specific EFs. On-farm N2O emissions based on these segregated EFs were 5% lower than those based on New Zealand-specific EFs. Improved farm management by avoiding grazing, effluent, and N fertiliser application during periods of high risk for N2O emissions, or by the use of mitigation technologies such as nitrification inhibitors, could reduce annual farm scale N2O emissions.


2014 ◽  
Vol 11 (9) ◽  
pp. 13571-13603 ◽  
Author(s):  
W. X. Ding ◽  
Z. M. Chen ◽  
H. Y. Yu ◽  
J. F. Luo ◽  
G. Y. Yoo ◽  
...  

Abstract. A field experiment was designed to study the effects of nitrogen (N) source and urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) or nitrification inhibitor dicyandiamide (DCD) on nitrous oxide (N2O) emission and N use efficiency (NUE) in a sandy loam soil. Six treatments including no N fertilizer (control), N fertilizer urea alone (U), urea plus NBPT (NBPT), urea plus DCD (DCD), urea plus NBPT and DCD (NBPT + DCD), and nitrate-based fertilizer nitrophosphate (NP) were designed and implemented separately during the wheat growth period. Seasonal cumulative N2O emissions with urea alone amounted to 0.49 ± 0.12 and were significantly (P < 0.05) reduced to 0.28 ± 0.03, 0.31 ± 0.01 and 0.26 ± 0.01kg N2O-N ha−1 by application of DCD, NBPT and NBPT + DCD, respectively. Cumulative N2O emissions from NP were 0.28 ± 0.01kg N2O-N ha−1. A single N2O flux peak was identified following basal fertilization, and DCD and/or NBPT inhibition effects mainly occurred during the peak emission period. The NP application significantly (P < 0.05) increased wheat yield by 12.3% and NUE from 28.8% (urea alone) to 35.9%, while urease and/or nitrification inhibitors showed a slight increase effect. Our results clearly indicated that the application of urea as basal fertilizer, but not as supplemental fertilizer, together with DCD and NBPT is an effective practice to reduce N2O emissions. The application of NP instead of urea would be an optimum agricultural strategy for reducing N2O emissions and increasing crop yield and NUE for wheat cultivation in soils of the North China Plain.


2016 ◽  
Vol 56 (3) ◽  
pp. 350 ◽  
Author(s):  
J. Luo ◽  
S. Ledgard ◽  
B. Wise ◽  
S. Lindsey

Animal urine deposited on pastoral soils during grazing is recognised as a dominant source of nitrous oxide (N2O) emissions. The nitrification inhibitor, dicyandiamide (DCD), is a potential mitigation technology to control N2O emissions from urine patches on grazed pastures. One delivery option is to include DCD in animal feed so that the DCD is targeted directly in the urine patch when excreted in the animal urine. The hypothesis tested in the present study was that DCD in urine, excreted by cows that were orally administered with DCD, would have the same effect as DCD added to urine after the urine is excreted. The study also aimed to determine the most effective DCD rate for reducing N2O emissions. Fresh dairy cow urine (700 kg N per ha) was applied to a free-draining silt loam pastoral soil in Waikato, New Zealand, in May (late autumn) or July (winter) of 2014, and was mixed with DCD at rates of 0, 10, 30 and 60 kg/ha. In late autumn, there was an equivalent treatment of urine (containing 60 kg DCD per ha) from DCD-treated cows. A static chamber technique was used to determine gaseous N2O emissions. An annual emission factor (EF3; the percentage of applied urine N lost as N2O-N) of 0.23% or 0.21% was found following late-autumn or winter applications of urine without DCD. Late-autumn application of urine containing DCD from oral administration to cows had the same significant reduction effect on N2O emissions as did DCD that was mixed with urine after excretion, at the equivalent DCD application rate of 60 kg/ha. Application of urine with DCD mixed with the urine after excretion at varying DCD rates showed a significant (P < 0.05) linear decrease in both N2O emissions and EF3 values.


2008 ◽  
Vol 48 (2) ◽  
pp. 147 ◽  
Author(s):  
Coby J. Hoogendoorn ◽  
Cecile A. M. de Klein ◽  
Alison J. Rutherford ◽  
Selai Letica ◽  
Brian P. Devantier

Urine deposited by grazing animals represents the largest source of N2O emissions in New Zealand. Sheep-grazed hill pastures are an important component of New Zealand pastoral land, but information on N2O emissions from these areas is limited. The purpose of this study was to investigate the effect of increasing rates of fertiliser nitrogen and of a nitrification inhibitor on N2O emissions from urine patches. The study was carried out in grazed paddock-scale trials at the Ballantrae and Invermay Research Stations, New Zealand. The fertiliser N treatments were 0, 100, 300 and 750 (500 for Invermay) kg N/ha.year. Nitrous oxide measurements were conducted in the spring of 2005 and 2006, following applications of synthetic sheep urine with or without dicyandiamide (DCD) in these four N treatments. In both years and at both sites, N2O emissions increased with N fertiliser application rate in both urine and non-urine affected areas. The addition of DCD to the synthetic urine reduced N2O emissions from the urine affected areas during the measurement period by 60–80% at Ballantrae and by 40% at Invermay. The N2O emission factors for the artificial sheep urine (expressed as N2O-N lost as % of N applied) ranged from 0.01 to 1.06%, with the higher values generally found in the high N fertiliser treatments. The N2O emission factors were generally less than or similar to those from sheep urine applied to flat land pasture.


Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 544 ◽  
Author(s):  
Clemens Scheer ◽  
David W. Rowlings ◽  
Massimiliano De Antoni Migliorati ◽  
David W. Lester ◽  
Mike J. Bell ◽  
...  

To meet the global food demand in the coming decades, crop yields per unit area must increase. This can only be achieved by a further intensification of existing cropping systems and will require even higher inputs of N fertilisers, which may result in increased losses of nitrous oxide (N2O) from cropped soils. Enhanced efficiency fertilisers (EEFs) have been promoted as a potential strategy to mitigate N2O emissions and improve nitrogen use efficiency (NUE) in cereal cropping systems. However, only limited data are currently available on the use of different EEF products in sub-tropical cereal systems. A field experiment was conducted to investigate the effect of three different EEFs on N2O emissions, NUE and yield in a sub-tropical summer cereal cropping system in Australia. Over an entire year soil N2O fluxes were monitored continuously (3h sampling frequency) with a fully-automated measuring system. The experimental site was fertilised with different nitrogen (N) fertilisers applied at 170kgNha–1, namely conventional urea (Urea), urea with the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP), polymer-coated urea (PCU), and urea with the nitrification inhibitor nitrapyrin (Nitrapyrin). Nitrous oxide emissions were highly episodic and mainly controlled by heavy rainfall events within two months of planting and fertiliser N application. Annual N2O emissions in the four treatments amounted to 2.31, 0.40, 0.69 and 1.58kgN2O-Nha–1year–1 for Urea, DMPP, PCU and Nitrapyrin treatments, respectively, while unfertilised plots produced an average of 0.16kgN2O-Nha–1year–1. Two of the tested products (DMPP and PCU) were found to be highly effective, decreasing annual N2O losses by 83% and 70%, respectively, but did not affect yield or NUE. This study shows that EEFs have a high potential to decrease N2O emissions from sub-tropical cereal cropping systems. More research is needed to assess if the increased costs of EEFs can be compensated by lower fertiliser application rates and/or yield increases.


2018 ◽  
Vol 58 (6) ◽  
pp. 1087 ◽  
Author(s):  
G. N. Ward ◽  
K. B. Kelly ◽  
J. W. Hollier

Nitrous oxide (N2O) from excreta deposited by grazing ruminants is a major source of greenhouse gas emissions in Australia. Experiments to measure N2O emissions from dairy cow dung, urine and pond sludge applied to pasture, and the effectiveness of the nitrification inhibitor nitrapyrin in reducing these emissions, were conducted in south-western Victoria, Australia. In Experiment 1, emissions from urine, with and without nitrapyrin, and from dung were measured. Treatments applied in September 2013 resulted in cumulative emissions (245 days) of 0.60, 5.35, 4.15 and 1.02 kg N2O-nitrogen (N)/ha for the nil, urine (1000 kg N/ha), urine (1000 kg N/ha) + nitrapyrin (1 kg active ingredients/ha), and dung (448 kg N/ha) treatments, respectively, giving emission factors of 0.47% and 0.09% for urine and dung respectively. Nitrapyrin reduced N2O emissions from urine for 35 days, with an overall reduction in emissions of 25%. In Experiment 2, sludge, with and without nitrapyrin, was applied in May 2014, and dung was applied in May, August, November 2014 and January 2015. Cumulative emissions (350 days) were 0.19, 0.49, 0.31 and 0.39 kg N2O-N/ha for the nil, sludge (308 kg N/ha), sludge (308 kg N/ha) + nitrapyrin (1 kg active ingredients/ha), and dung (total 604 kg N/ha) treatments, respectively, giving emission factors of 0.10% and 0.03% for sludge and dung. Nitrapyrin reduced N2O emissions from sludge for 60 days, with an overall reduction in emissions of 59%. A third experiment on two soil types compared emissions from urine and dung, with and without nitrapyrin, applied in different seasons of the year. Emissions were highly seasonal and strongly related to soil water status. Emission factors (90 days) ranged from 0.02% to 0.19% for urine and 0.01% to 0.12% for dung. Nitrapyrin reduced emissions from urine by 0–35% and had little effect on emissions from dung. Overall, the experiments found that nitrapyrin was an effective tool in reducing emissions from urine, dung and sludge applied to pasture, but the magnitude varied across the year, with nitrapyrin being most effective when soils had >70% water-filled pore space when major emissions occurred.


Author(s):  
Haibo An ◽  
Jen Owens ◽  
Brian Beres ◽  
Yuejin Li ◽  
Xiying Hao

AbstractOptimizing nitrogen fertilizer management can reduce nitrous oxide (N2O) emissions. This study tested if split applying enhanced efficiency fertilizers (EEFs) resulted in lower N2O emissions than applying equivalent rates of urea at planting. In semiarid southern Alberta, field trials were conducted during three years (planting to harvest) in rainfed winter wheat crops. Annual fertilizer rates ranged from 146 to 176 kg N ha−1. Fertilizer types were urea, and three EEFs (polymer-coated urea, urea with urease and nitrification inhibitors, and urea with a nitrification inhibitor). Each fertilizer type was applied three ways: 100% banded at planting, split applied 30% banded at planting and 70% broadcast in late fall, and split applied 30% banded at planting and 70% broadcast at Feekes growth stage 4 (GS4, post-tiller formation, wheat entering the greening up phase in the early spring). Nitrous oxide was measured using static chambers between sub-weekly and monthly from planting to harvest. Over three years, cumulative N2O emissions ranged from 0.16 to 1.32 kg N ha−1. This was equivalent to emissions factors between 0.009 and 0.688%. Cumulative N2O emissions and emissions factors did not differ between fertilizer types, but they were lower when fertilizer was split applied at GS4 compared to in late fall (P ≤ 0.10). Our study suggests that EEFs do not reduce N2O emissions from rainfed winter wheat crops, but a well-timed split application with a majority of fertilizer applied after winter can minimize N2O emissions.


Sign in / Sign up

Export Citation Format

Share Document