scholarly journals Uremia and Inadequate Oxygen Supply Induce Eryptosis and Intracellular Hypoxia in Red Blood Cells

2021 ◽  
Vol 55 (4) ◽  
pp. 449-459

BACKGROUND/AIMS: Chronic kidney disease is frequently accompanied by anemia, hypoxemia, and hypoxia. It has become clear that the impaired erythropoietin production and altered iron homeostasis are not the sole causes of renal anemia. Eryptosis is a process of red blood cells (RBC) death, like apoptosis of nucleated cells, characterized by Ca2+ influx and phosphatidylserine (PS) exposure to the outer RBC membrane leaflet. Eryptosis can be induced by uremic toxins and occurs before senescence, thus shortening RBC lifespan and aggravating renal anemia. We aimed to assess eryptosis and intracellular oxygen levels of RBC from hemodialysis patients (HD-RBC) and their response to hypoxia, uremia, and uremic toxins uptake inhibition. METHODS: Using flow cytometry, RBC from healthy individuals (CON-RBC) and HD-RBC were subjected to PS (Annexin-V), intracellular Ca2+ (Fluo-3/AM) and intracellular oxygen (Hypoxia Green) measurements, at baseline and after incubation with uremic serum and/or hypoxia (5% O2), with or without ketoprofen. Baseline levels of uremic toxins were quantified in serum and cytosol by high performance liquid chromatography. RESULTS: Here, we show that HD-RBC have less intracellular oxygen and that it is further decreased post-HD. Also, incubation in 5% O2 and uremia triggered eryptosis in vitro by exposing PS. Hypoxia itself increased the PS exposure in HD-RBC and CON-RBC, and the addition of uremic serum aggravated it. Furthermore, inhibition of the organic anion transporter 2 with ketoprofen reverted eryptosis and restored the levels of intracellular oxygen. Cytosolic levels of the uremic toxins pCS and IAA were decreased after dialysis. CONCLUSION: These findings suggest the participation of uremic toxins and hypoxia in the process of eryptosis and intracellular oxygenation.

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Gabriela Ferreira Dias ◽  
Gabriela Bohnen ◽  
Nadja Grobe ◽  
Xia Tao ◽  
Roberto Pecoits-Filho ◽  
...  

Abstract Background and Aims We have previously described that indoxyl sulfate promotes red blood cells (RBC) ROS generation through organic anion transporter 2 as well as NADPH oxidase activity-dependent and GSH-independent mechanisms (Dias et al., 2018). However, there is little information regarding pathways of antioxidant balance to protect RBC from extensive oxidative stress that occurs during hemodialysis (HD). Intracellular free heme is degraded by Heme Oxygenase 1 (HO-1), which is regarded as the major cytoprotective enzyme (Maines, 1988; Gozzelino et al., 2010). In the current study, we assessed HO-1 activity and ROS production in RBC from healthy subjects and hemodialysis (HD) patients before and after HD. Method Blood was drawn from 6 healthy individuals (CON-RBC) and 6 HD patients (HD-RBC) before (pre/HD-RBC) and after high flux HD (post/HD-RBC). Isolated RBC were stained with DCFH-DA (Abcam) for ROS measurements. To quantify HO-1, RBC were incubated with anti-HO-1 antibody (Abcam) and m-IgGκ BP-CFL 488 (Santa Cruz Biotechnology) as a secondary antibody. Samples were analyzed by flow cytometry. Results Our results show a 4-fold increase in ROS levels in pre/HD-RBC compared to CON-RBC. ROS levels were even further increased by 1.65-fold after HD treatment in post/HD-RBC (Figure 1). Both pre/HD-RBC and post/HD-RBC showed a similarly significant increase of 3.3-fold in HO-1 compared to CON-RBC. (Figure 1). Conclusion High levels of HO-1 may represent a defense against oxidative stress that occurs in ESKD and particularly during the HD session. Further research is needed to evaluate whether HO-1 overexpression could accelerate heme degradation and contribute to renal anemia.


2011 ◽  
Vol 10 (6) ◽  
pp. 2842-2851 ◽  
Author(s):  
William R. Wikoff ◽  
Megha A. Nagle ◽  
Valentina L. Kouznetsova ◽  
Igor F. Tsigelny ◽  
Sanjay K. Nigam

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shoichi Ozawa ◽  
Masayuki Tsujimoto ◽  
Hitoshi Uchiyama ◽  
Natsuko Ito ◽  
Satoe Morishita ◽  
...  

Abstract Pharmacokinetics of SN-38 in patients with end-stage kidney disease (ESKD) is partially varied because of fluctuations in transporters expression and/or function by high protein bound-uremic toxins concentration. The fluctuations may induce variations in anticancer drugs sensitivity to cancer cells. We aimed to clarify the variations in sensitivity of SN-38 to cancer patients with ESKD and investigate this mechanism, by human colon cancer cells exposed to uremic serum residue. LS180 cells were exposed to normal or uremic serum residue (LS/NSR or LS/USR cells) for a month. IC50 values of SN-38 in LS/NSR or LS/USR cells were calculated from viability of each cells treated SN-38. mRNA expression and intracellular SN-38 accumulation was evaluated by RT-PCR and HPLC-fluorescence methods, respectively. The IC50 value in LS/USR cells was higher than that in LS/NSR cells. Organic anion transporter polypeptide (OATP) 2B1 mRNA expression was lower in LS/USR cells than in LS/NSR cells, and SN-38 accumulation in LS/USR cells was lower than that in LS/NSR cells. Only co-treatment baicalin, which is OATP2B1 inhibitor, almost negated the difference in SN-38 accumulation between LS/NSR and LS/USR. Anticancer effects of substrates of OATP2B1, such as SN-38, were reduced in ESKD patients at the same plasma substrate concentration.


2004 ◽  
Vol 42 (08) ◽  
Author(s):  
A Geier ◽  
CG Dietrich ◽  
C Gartung ◽  
F Lammert ◽  
HE Wasmuth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document