Diethyl Ether to Hydrocarbons Catalytic Transformation Over Iron Modified H-ZSM-5 Zeolite

2019 ◽  
Vol 5 (12) ◽  
pp. 12-19 ◽  
Author(s):  
V. Doluda ◽  
N. Lakina ◽  
R. Brovko

Decrease of traditional hydrocarbon feed stock stimulates a widespread interest in the development hydrocarbons synthesis from renewable or low-value sources. The catalytic transformation of methanol into hydrocarbons, along with the Fischer–Tropsch process, can be considered as a possible way to obtain synthetic hydrocarbons. At the same time, the activity and stability of the catalysts have a decisive influence on the efficiency of the whole process. Zeolites and zeotypes of various structures traditionally used as catalysts are characterized by low rates of hydrocarbon accumulation and a short period of functioning, which requires a change in their structural characteristics or the synthesis of new systems. The aim of this work is to obtain iron-modified H-ZSM-5 type zeolites in order to increase the rate of liquid hydrocarbons accumulation and increase the lifetime of the catalyst. To achieve this goal zeolite was modified with iron, the main physicochemical characteristics of the obtained catalysts were determined and the catalytic properties were screened. Modification of zeolites by iron was carried out by the ion exchange method, as a result samples with an iron content of 0.004 wt.% to 0.240 wt.% were synthesized. In this case the decrease in the micropores surface from 280 m2/g to 190 m2/g and decrease in the number of acid sites from 1.08 mmol/g to 0.72 mmol/g was noticed. Modification of zeolite with iron of concentration up to 0.008 wt. % contributed to an increase in transformation rate of dimethyl ether from 0.04 to 0.06 kg (DME)/(kg (Cat)h) and decreace to 0.03 kg (DME)/(kg (Cat) h) during further increasing of iron content, however process selectivity to liquid hydrocarbons increase from 30% to 54%. Modification of zeolite with iron contributes to a significant change in hydrocarbon composition. With an increase in the iron concentration from 0.004 wt.% to 0.017 wt.%, the increase in the concentration of propane, butane and aliphatic hydrocarbons with the number of carbon atoms of six or more was noticed along with a decrease in the concentration of aromatic compounds.

Author(s):  
Yuri Fedorov ◽  
Yuri Fedorov ◽  
Irina Dotsenko ◽  
Irina Dotsenko ◽  
Leonid Dmitrik ◽  
...  

The distribution and behavior of certain of trace elements in sea water is greatly affected by both physical, chemical and hydrometeorological conditions that are showed in the scientific works of prof. Yu.A. Fedorov with coauthors (1999-2015). Due to the shallow waters last factor is one of the dominant, during the different wind situation changes significantly the dynamics of water masses and interaction in the system “water – suspended matter – bottom sediments”.Therefore, the study of the behavior of the total iron in the water of the sea at different wind situation is relevant. The content of dissolved iron forms migration in The Sea of Azov water (open area) varies from 0.017 to 0.21 mg /dm3 (mean 0.053 mg /dm3) and in Taganrog Bay from 0.035 to 0.58 mg /dm3 (mean 0.11 mg /dm3) and it is not depending on weather conditions.The reduction in the overall iron concentration in the direction of the Taganrog Bay → The Sea of Azov (open area) is observed on average more than twice. The dissolved iron content exceeding TLV levels and their frequency of occurrence in the estuary, respectively, were higher compared with The Sea of Azov (open area).There is an increase in the overall iron concentration in the water of the Azov Sea on average 1.5 times during the storm conditions, due to the destruction of the structure of the upper layer and resuspension of bottom sediments, intensifying the transition of iron compounds in the solution.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 286
Author(s):  
Valery Davydov ◽  
Evgenii Roginskii ◽  
Yuri Kitaev ◽  
Alexander Smirnov ◽  
Ilya Eliseyev ◽  
...  

We report the results of experimental and theoretical studies of phonon modes in GaN/AlN superlattices (SLs) with a period of several atomic layers, grown by submonolayer digital plasma-assisted molecular-beam epitaxy, which have a great potential for use in quantum and stress engineering. Using detailed group-theoretical analysis, the genesis of the SL vibrational modes from the modes of bulk AlN and GaN crystals is established. Ab initio calculations in the framework of the density functional theory, aimed at studying the phonon states, are performed for SLs with both equal and unequal layer thicknesses. The frequencies of the vibrational modes are calculated, and atomic displacement patterns are obtained. Raman spectra are calculated and compared with the experimental ones. The results of the ab initio calculations are in good agreement with the experimental Raman spectra and the results of the group-theoretical analysis. As a result of comprehensive studies, the correlations between the parameters of acoustic and optical phonons and the structure of SLs are obtained. This opens up new possibilities for the analysis of the structural characteristics of short-period GaN/AlN SLs using Raman spectroscopy. The results obtained can be used to optimize the growth technologies aimed to form structurally perfect short-period GaN/AlN SLs.


Microbiology ◽  
2004 ◽  
Vol 150 (9) ◽  
pp. 2931-2945 ◽  
Author(s):  
Bradley L. Dubbels ◽  
Alan A. DiSpirito ◽  
John D. Morton ◽  
Jeremy D. Semrau ◽  
J. N. E. Neto ◽  
...  

Cells of the magnetotactic marine vibrio, strain MV-1, produce magnetite-containing magnetosomes when grown anaerobically or microaerobically. Stable, spontaneous, non-magnetotactic mutants were regularly observed when cells of MV-1 were cultured on solid media incubated under anaerobic or microaerobic conditions. Randomly amplified polymorphic DNA analysis showed that these mutants are not all genetically identical. Cellular iron content of one non-magnetotactic mutant strain, designated MV-1nm1, grown anaerobically, was ∼20- to 80-fold less than the iron content of wild-type (wt) MV-1 for the same iron concentrations, indicating that MV-1nm1 is deficient in some form of iron uptake. Comparative protein profiles of the two strains showed that MV-1nm1 did not produce several proteins produced by wt MV-1. To understand the potential roles of these proteins in iron transport better, one of these proteins was purified and characterized. This protein, a homodimer with an apparent subunit mass of about 19 kDa, was an iron-regulated, periplasmic protein (p19). Two potential ‘copper-handling’ motifs (MXM/MX2M) are present in the amino acid sequence of p19, and the native protein binds copper in a 1 : 1 ratio. The structural gene for p19, chpA (copper handling protein) and two other putative genes upstream of chpA were cloned and sequenced. These putative genes encode a protein similar to the iron permease, Ftr1, from the yeast Saccharomyces cerevisiae, and a ferredoxin-like protein of unknown function. A periplasmic, copper-containing, iron(II) oxidase was also purified from wt MV-1 and MV-1nm1. This enzyme, like p19, was regulated by media iron concentration and contained four copper atoms per molecule of enzyme. It is hypothesized that ChpA, the iron permease and the iron(II) oxidase might have analogous functions for the three components of the S. cerevisiae copper-dependent high-affinity iron uptake system (Ctr1, Ftr1 and Fet3, respectively), and that strain MV-1 may have a similar iron uptake system. However, iron(II) oxidase purified from both wt MV-1 and MV-1nm1 displayed comparable iron oxidase activities using O2 as the electron acceptor, indicating that ChpA does not supply the multi-copper iron(II) oxidase with copper.


Blood ◽  
2002 ◽  
Vol 100 (1) ◽  
pp. 17-21 ◽  
Author(s):  
Emanuele Angelucci ◽  
Pietro Muretto ◽  
Antonio Nicolucci ◽  
Donatella Baronciani ◽  
Buket Erer ◽  
...  

Abstract To identify the role of iron overload in the natural history of liver fibrosis, we reviewed serial hepatic biopsy specimens taken annually from patients cured of thalassemia major by bone marrow transplantation. The patients underwent transplantation between 1983 and 1989 and did not receive any chelation or antiviral therapy. Two hundred eleven patients (mean age, 8.7 ± 4 years) were evaluated for a median follow-up of 64 months (interquartile range, 43-98 months) by a median number of 5 (interquartile range, 3-6) biopsy samples per patient. Hepatic iron concentration was stratified by tertiles (lower, 0.5-5.6 mg/g; medium, 5.7-12.7 mg/g; upper, 12.8-40.6 mg/g dry weight). Forty-six (22%) patients showed signs of liver fibrosis progression; the median time to progression was 51 months (interquartile range, 36-83 months). In a multivariate Cox proportional hazard model, the risk for fibrosis progression correlated to medium hepatic iron content (hazard rate, 1.9; 95% confidence interval [CI], 0.74-5.0), high hepatic iron content (hazard rate, 8.7; 95% CI, 3.6-21.0) and hepatitis C virus (HCV) infection (hazard rate, 3.1; 95% CI, 1.5-6.5). A striking increase in the risk for progression was found in the presence of both risk factors. None of the HCV-negative patients with hepatic iron content lower than 16 mg/g dry weight showed fibrosis progression, whereas all the HCV-positive patients with hepatic iron concentration greater than 22 mg/g dry weight had fibrosis progression in a minimum follow-up of 4 years. Thus, iron overload and HCV infection are independent risk factors for liver fibrosis progression, and their concomitant presence results in a striking increase in risk.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Zhuo Yao ◽  
Dianli Qu ◽  
Yuxiang Guo ◽  
Yujing Yang ◽  
Hong Huang

Novel catalysts with high activity for the selective catalytic reduction of NO with NH3 (NH3-SCR) at low temperatures are highly demanded. In this study, mixed-node metal-organic frameworks (MOFs), e.g. Mn@CuBTC with controlled Mn composition in Cu3(BTC)2, were fabricated using postsynthetic exchange method and their structural characteristics and catalytic performances for NH3-SCR reaction were assessed. A series of analyses in terms of structure, surface morphology, texture, and chemical state determined that Mn ions were successfully incorporated into the Cu3(BTC)2 crystal lattice as well as adsorbed on the walls of nanopores in the framework. The pore sizes can be finely tuned in the presence of Mn ions in the cages, which significantly suppressed water adsorption. The NH3-SCR activity of Mn@CuBTC exhibited nearly 100% NOx conversion rate in the temperature range (230–260°C). The superior NH3-SCR performance is attributed to the proper pore sizes, reduced water content, and the synergistic effect between manganese and copper ions in the MOF structure, which enhanced NH3 bound to the active Lewis sites.


Clay Minerals ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 623-632 ◽  
Author(s):  
M. Janek ◽  
P. Komadel ◽  
G. Lagaly

AbstractHydrogen-forms of <2 µm fractions of six bentonites of various Fe contents were prepared by H+→OH-→H+ ion exchange using resins. Potentiometric titration curves revealed that the number of strong acid sites varied and accounted for 60-95% of the total acidity in the freshly prepared H-forms. The number of strong acid sites decreased and that of the weak acid sites increased on ageing. The process of autotransformation in aqueous dispersion at 90~ was completed within four days. Layer-charge distributions of all samples were inhomogeneous with layer charges from 0.25-0.39 Eq/unit O10(OH)2. Oxalate pretreatment of the samples resulted in changes in the layer-charge distribution due to the removal of readily soluble phases which may have blocked exchange sites. After autotransformation, the alkylammonium exchange method revealed inhomogeneous charge density distributions; the fraction of layers of the highest charge decreased. Comparison of total CEC obtained from potentiometric curves and interlamellar CEC calculated from the mean layer charge confirmed attack of protons from particle edges. However, for several samples the structural attack may also occur from the interlayer space. Autotransformation of the Hsmectites decreased the mean layer charge. Protons probably attack the Mg(O,OH)6 octahedra preferentially during the autotransformation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3825-3825
Author(s):  
Nelson Hamerschlak ◽  
Laercio Rosemberg ◽  
Alexandre Parma ◽  
Fernanda F. Assir ◽  
Frederico R. Moreira ◽  
...  

Abstract Magnetic Ressonance Imaging (MRI) using T2 star (T2*) tecnique appears to be a very useful method for monitoring iron overload and iron chelation therapy in thalassaemia. In Brazil, we have around 400 thalassaemic major patients all over the country. They were treated with hipertransfusion protocols and desferroxamine and/or deferiprone chelation. We developed a cooperative program with the Brazilian Thalassaemic Patients Association (ABRASTA) in order to developT2* tecnique in Brazil to submit brazilian patients to an annual iron overload monitoring process with MRI.. We performed the magnetic ressonance T2* using GE equipment (GE, Milwaukee USA), with validation to chemical estimation of iron in patients undergoing liver biopsy. Until now, 60 patients were scanned, median age=23,2 (12–54); gender: 18 male (30%) and 42 female (70%). The median ferritin levels were 2030 ng/ml (Q1=1466; Q3=3296). As other authors described before, there was a curvilinear inverse correlation between iron concentration by biopsy, liver T2*(r=0,92) and also there were a correlation with ferritin levels. We also correlated myocardial iron measured by T2* with ventricular function.. As miocardial iron increased, there was a progressive decline in ejection fraction and no significant correlation was found between miocardial T2* and the ferritin levels. Liver iron content can be predicted by ferritin levels. On the other hand, cardiac disfunction is the most important cause of mortality among thalassaemic patients. Since Miocardio iron content cannot be predicted from serum ferritin or liver iron, and ventricular function can only detect those with advance disease, intensification and combination of chelation therapy, guided by T2* MRI tecnique should reduce mortality from the reversible cardiomyopathy among thalassaemic patients.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1543-1543 ◽  
Author(s):  
Sara Gardenghi ◽  
Maria Marongiu ◽  
Pedro Ramos ◽  
Ella Guy ◽  
Laura Breda ◽  
...  

Abstract Progressive iron overload occurs in β-thalassemia as a result of increased gastrointestinal absorption. Our goal is to investigate the relationship between ineffective erythropoiesis (IE), iron-related genes and organ iron distribution in mice that exhibit levels of anemia consistent with thalassemia intermedia (th3/+) and major (th3/th3), as we described previously. The th3/th3 mice die in 8 weeks due to severe anemia but can be rescued by transfusion therapy. We analyzed up to 90 animals at 2, 5 and 12 months, as appropriate. We monitored various hematological parameters, tissue iron content and quantitative-PCR levels of Hamp, Fpn1, Smad4, Cebpa, Hfe, Tfr1 and other genes involved in iron metabolism in liver, spleen, kidney, heart and duodenum. At 2 months, th3/th3 mice had the highest total body iron content and highest degree of IE. The total iron was 53.6±21.0, 406.1±156.1, 657.7±40.3 μg in the spleen, and 107.5±35.7, 208.5±24.9 and 1298.7±427.5 μg in the liver of +/+, th3/+ and th3/th3, respectively (n≥5 per genotype). However, if the organ size was not taken in account, the iron concentration in the spleen of th3/+ was higher, in average, than that of th3/th3 mice (3.8±1.5 and 2.9±0.5 μg/mg), while in the liver was the opposite (0.6±0.1 and 5.1±2.0 μg/mg of dry weight, P<0.001). Heme and non-heme iron analyses provided similar results. Surprisingly, the distribution of iron within organs also differed. In th3/+ mice, the hepatic iron was almost exclusively located in Kupffer cells, whereas in th3/th3 mice in parenchymal cells. Our data suggest that Hamp is responsible for the increased iron absorption, being reduced to 20% and 70% in 2 month-old th3/+ and th3/th3 mice compared to +/+ animals (P<0.001). Hfe was reduced by 50% (P<0.05) in the liver of the animals that expressed low Hamp levels, indicating that Hfe could be directly responsible for Hamp regulation or share the same regulatory pathway. Low levels of Smad4 and Cebpa were observed only in the liver of mice with the lowest Hamp expression (P<0.05), indicating that these proteins might contribute to further decreased Hamp synthesis. In addition, while Tfr1 in th3/+ mice was 40% lower in the liver, it was up-regulated (400%) in th3/th3 mice (P<0.001), which may explain why iron is increased more in the liver of th3/th3 mice. In 5 and 12 month-old th3/+ mice, the surprising observation was the normal expression level of Hamp. However, in the duodenum, the Fpn1 RNA and protein levels were augmented (300%, P<0.001). In transfused th3/+ and th3/th3 animals, Hamp, Hfe, Cbpa and Smad4 expression levels were normalized or increased, while Tfr1 was down-regulated in both groups, which may explain the increased splenic iron deposition in these animals. Our data suggest that IE, together with the relative expression levels of Hamp and Tfr1, is largely responsible for the organ iron overload observed in young thalassemic mice. However, in older mice, it is the increase of Fpn1 levels in the duodenum that sustains iron accumulation, thus revealing a fundamental role of this iron transporter in the genesis of iron overload in β-thalassemia.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3493-3493
Author(s):  
Martin Wermke ◽  
Jan Moritz Middeke ◽  
Nona Shayegi ◽  
Verena Plodeck ◽  
Michael Laniado ◽  
...  

Abstract Abstract 3493 An increased risk for GvHD, infections and liver toxicity after transplant has been attributed to iron overload (defined by serum ferritin) of MDS and AML patients prior to allogeneic hematopoietic stem cell transplantation (allo-HSCT). Nevertheless, the reason for this observation is not very well defined. Consequently, there is a debate whether to use iron chelators in these patients prior to allo-HSCT. In fact, serum ferritin levels and transfusion history are commonly used to guide iron depletion strategies. Both parameters may inadequately reflect body iron stores in MDS and AML patients prior to allo-HSCT. Recently, quantitative magnetic resonance imaging (MRI) was introduced as a tool for direct measurement of liver iron. We therefore aimed at evaluating the accurateness of different strategies for determining iron overload in MDS and AML patients prior to allo-HSCT. Serologic parameters of iron overload (ferritin, iron, transferrin, transferrin saturation, soluble transferrin receptor) and transfusion history were obtained prospectively in MDS or AML patients prior to allo-SCT. In parallel, liver iron content was measured by MRI according to the method described by Gandon (Lancet 2004) and Rose (Eur J Haematol 2006), respectively. A total of 20 AML and 9 MDS patients (median age 59 years, range: 23–74 years) undergoing allo-HSCT have been evaluated so far. The median ferritin concentration was 2237 μg/l (range 572–6594 μg/l) and patients had received a median of 20 transfusions (range 6–127) before transplantation. Serum ferritin was not significantly correlated with transfusion burden (t = 0.207, p = 0.119) but as expected with the concentration of C-reactive protein (t = 0.385, p = 0.003). Median liver iron concentration measured by MRI was 150 μmol/g (range 40–300 μmol/g, normal: < 36 μmol/g). A weak but significant correlation was found between liver iron concentration and ferritin (t = 0.354; p = 0.008). The strength of the correlation was diminished by the influence of 5 outliers with high ferritin concentrations but rather low liver iron content (Figure 1). The same applied to transfusion history which was also only weakly associated with liver iron content (t = 0.365; p = 0.007). Levels of transferrin, transferrin saturation, total iron and soluble transferrin receptor did not predict for liver iron concentration. Our data suggest that serum ferritin or transfusion history cannot be regarded as robust surrogates for the actual iron overload in MDS or AML patients. Therefore we advocate caution when using one of these parameters as the only trigger for chelation therapy or as a risk-factor to predict outcome after allo-HSCT. Figure 1. Correlation of Liver iron content with Ferritin. Figure 1. Correlation of Liver iron content with Ferritin. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 966-966
Author(s):  
Haven M. Allard ◽  
Marcela G. Weyhmiller ◽  
Ashutosh Lal ◽  
Ellen B. Fung

Abstract Introduction When monitoring bone health in patients with hemoglobinapathies, it is unknown if iron in surrounding tissues can lead to inaccuracies in the 2-dimensional assessment by Dual Energy X-ray Absorptiometry (DXA). Objective The aims of this study were: 1) to determine if the accuracy of lumbar spine assessment by DXA is affected by high liver iron concentration in patients with Sickle Cell Disease (SCD) or Thalassemia (Thal), 2) to test the effect of high tissue iron on vertebral Z-scores using phantoms, 3) to explore the ability to account for potential high-iron content effects when performing DXA examinations. Methods This study consisted of a retrospective chart review of data collected by the Children’s Hospital & Research Center Oakland, Bone Density Clinic and Iron Measurement Program. Data from both DXA and Super Conducting Quantum Interference Device (SQUID) examinations collected between 2002 and 2013 from were abstracted. Only those patients with a diagnosis of SCD or Thal, who had a DXA and SQUID measurement within the same year were divided into an iron overload group (liver iron concentration (LIC) >3,000 µg Fe/g wet) and low iron (LIC <500 µg Fe/g wet) group. These patients were compared with healthy controls of which only 13 had both DXA and SQUID tests, 34 had DXA only. The 34 healthy controls without a SQUID test were included because it was assumed, based on their health screen that their liver-iron content would not interfere with DXA. In order to explore aim 1, a lumbar spine scan, by DXA, of each subject was re-analyzed to compare the derived areal bone mineral density (aBMD) Z-scores of lumbar vertebrae that are covered by the liver (presumed L1 or L1/L2) with the Z-scores of the lumbar vertebrae not covered by the liver (L3/L4). To explore aim 2, phantoms were designed to mimic the geometry of iron loaded tissues in order to explore the contribution of iron in specific tissues on the accuracy of DXA assessments. Phantoms were constructed using KNOX® brand gelatin and iron(II) sulfate heptahydrate and had concentrations ranging from 3,000 to 7,000 ug Fe/g gelatin. The iron-loaded phantoms were positioned obtusely overlying L1/L2 of the DXA daily quality control phantom to mimic the position of the liver. All data were analyzed by STATA ver.9.2 and were considered significant with a p<0.05. Results Data from 102 total visits abstracted from 88 subjects [19 SCD (13 F), 24 Thal (12 F), age: 30.1 ± 11.9 years, mean ± SD], and 45 healthy controls (24 F, age: 25.4 ± 11.0 yrs) were analyzed. The SCD and Thal group had an average LIC by SQUID of 4651 ± 2079 µg Fe/g wet tissue and serum ferritin of 5408±2706 ng/mL; while the healthy controls, with both a DXA and a SQUID (n=17), had an average LIC of 251±144. Average aBMD Z-score of the lumbar spine L1-L4 in the Thal group was -2.0 ± 1.1 , the SCD was -2.0 ± 1.6 and the healthy controls: -0.3 ± 0.9. However, when individual vertebrae are analyzed separately, a significant difference was observed between the lumbar spine L1 BMD Z-scores compared to the combined means of L3/L4 Z-scores in the iron loaded population (Table 1). The discrepancy was even greater in subjects with LIC >5000 ug/g wet tissue. These findings were reproduced using heavily iron loaded phantoms. Conclusions Initial results for this study show that there is a relationship between liver iron content and lumbar spine aBMD Z-scores when evaluated by DXA. The BMD Z-score for L1 appears to be more significantly affected by the liver iron content then L2, which was unanticipated. When evaluating patients with liver iron content >3,000 ug/g wet tissue, it is important to consider the effects of iron contribution from the liver on the DXA spine scans and delete L1 and/or L2 from the total Z-score prior to making an interpretation. Failing to do so may under diagnose low bone mass in this at risk patient population. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document