Quantitative regularities of changes in the relative content of chlorophyll at the joint action of light and temperature in diatoms

Author(s):  
Ilona V. Kovalyova ◽  
Zosim Z. Finenko

According to experimental data for two spеcies of diatoms Phaeodactylum tricornutum and Skeletonema costatum, a mathematical description of the combined effect of light and temperature on the change in the intracellular ratio of organic carbon to chlorophyll a was carried out. The equation allows estimating the relative content of chlorophyll in algae in a wide range of temperature and light conditions. According to the results of calculations, the power relationship between temperature and organic carbon and chlorophyll was determined. The highest values of the relative content of chlorophyll were observed at high light intensity and low temperature, the minimum ones were at high temperature and low light intensity. At high density of the light flux, the effect of temperature on the specific content of chlorophyll in algae is more pronounced than at low irradiance.

Weed Science ◽  
2021 ◽  
pp. 1-26
Author(s):  
Gulshan Mahajan ◽  
Asheneel Prasad ◽  
Bhagirath Singh Chauhan

Abstract Sumatran fleabane [Conyza sumatrensis (Retz.) Walker] is an emerging weed in the Australian cropping region. Populations resistant to glyphosate have evolved in Australia, creating the demand for information regarding the seed germination ecology of glyphosate-resistant (R) and glyphosate susceptible (S) populations of C. sumatrensis. A study was conducted to examine the effect of temperature, light intensity, salt stress, osmotic stress, and burial depth on the germination and emergence of two populations (R and S) of C. sumatrensis. Both populations were able to germinate over a wide range of alternating day/night temperatures (15/5 to 35/25 C). In light/dark conditions, the R population had higher germination than the S population at 20/10 and 35/25 C. In the dark, the R population had higher germination than the S population at 25/15 C. In the dark, germination was inhibited at 30/20 C and above. Averaged over populations, seed germination of C. sumatrensis was reduced by 97% at zero light intensity (completely dark conditions) compared with full light intensity. Seed germination of C. sumatrensis reduced by 17 and 85% at an osmotic potential of −0.4, and −0.8 MPa, respectively, compared with the control treatment. The R population had lower germination (57%) than the S population (72%) at a sodium chloride concentration of 80 mM. Seed germination was highest on the soil surface and emergence was reduced by 87 and 90% at burial depths of 0.5 and 1.0 cm, respectively. Knowledge gained from this study suggests that a shallow-tillage operation to bury weed seeds in conventional tillage systems, and retention of high residue cover in a zero-till system on the soil surface may inhibit the germination of C. sumatrensis. This study also warrants that the R population may have a greater risk of invasion over a greater part of a year due to germination over a broader temperature range.


Author(s):  
Alexander S. Lelekov ◽  
Rudolf P. Trenkenshu

The paper presents an example of the linear splines use to describe the photosynthesis light curves for microalgae culture. The main mathematical models of the relationship between photosynthesis rate and light are listed. Based on the previously formulated basic principles of modeling microalgae photobiosynthesis, a mathematical model is proposed that describes the dependence of the assimilation number of chlorophyll a on the value of the light flux by linear splines. The advantage of the proposed approach is a clear definition of the point of change of the limiting factor. It is shown that light-limited photosynthesis rate is determined not only by external irradiation, but also by the concentration of chlorophyll a. The light-saturated rate depends on the amount of a key enzyme complex, which limits the rate of energy exchange reactions in the cell. Verification of the proposed model on the example of the diatom microalgae Skeletonema costatum was carried out. It is shown that the higher the degree of cell adaptation to high irradiation, the better the photosynthesis curve is described by linear splines. If S. costatum cells are adapted to low irradiation, deviations of experimental data from the idealized broken line are observed, which are caused by changes in the pigment composition. When the experimental data are normalized, the cell adaptation factor is reduced, all points are described by a single broken line, which indicates the universality of the proposed approach.


2009 ◽  
Vol 34 (12) ◽  
pp. 2196-2201 ◽  
Author(s):  
Xue-Li QI ◽  
Lin HU ◽  
Hai-Bin DONG ◽  
Lei ZHANG ◽  
Gen-Song WANG ◽  
...  

2017 ◽  
Vol 129 (2) ◽  
pp. 209-221 ◽  
Author(s):  
Amritpal S. Singh ◽  
A. Maxwell P. Jones ◽  
Mukund R. Shukla ◽  
Praveen K. Saxena

2019 ◽  
Vol 85 (20) ◽  
Author(s):  
Nicole J. Bale ◽  
Marton Palatinszky ◽  
W. Irene C. Rijpstra ◽  
Craig W. Herbold ◽  
Michael Wagner ◽  
...  

ABSTRACT “Candidatus Nitrosotenuis uzonensis” is the only cultured moderately thermophilic member of the thaumarchaeotal order Nitrosopumilales (NP) that contains many mesophilic marine strains. We examined its membrane lipid composition at different growth temperatures (37°C, 46°C, and 50°C). Its lipids were all membrane-spanning glycerol dialkyl glycerol tetraethers (GDGTs), with 0 to 4 cyclopentane moieties. Crenarchaeol (cren), the characteristic thaumarchaeotal GDGT, and its isomer (crenʹ) were present in high abundance (30 to 70%). The GDGT polar headgroups were mono-, di-, and trihexoses and hexose/phosphohexose. The ratio of glycolipid to phospholipid GDGTs was highest in the cultures grown at 50°C. With increasing growth temperatures, the relative contributions of cren and crenʹ increased, while those of GDGT-0 to GDGT-4 (including isomers) decreased. TEX86 (tetraether index of tetraethers consisting of 86 carbons)-derived temperatures were much lower than the actual growth temperatures, further demonstrating that TEX86 does not accurately reflect the membrane lipid adaptation of thermophilic Thaumarchaeota. As the temperature increased, specific GDGTs changed relative to their isomers, possibly representing temperature adaption-induced changes in cyclopentane ring stereochemistry. Comparison of a wide range of thaumarchaeotal core lipid compositions revealed that the “Ca. Nitrosotenuis uzonensis” cultures clustered separately from other members of the NP order and the Nitrososphaerales (NS) order. While phylogeny generally seems to have a strong influence on GDGT distribution, our analysis of “Ca. Nitrosotenuis uzonensis” demonstrates that its terrestrial, higher-temperature niche has led to a lipid composition that clearly differentiates it from other NP members and that this difference is mostly driven by its high crenʹ content. IMPORTANCE For Thaumarchaeota, the ratio of their glycerol dialkyl glycerol tetraether (GDGT) lipids depends on growth temperature, a premise that forms the basis of the widely applied TEX86 paleotemperature proxy. A thorough understanding of which GDGTs are produced by which Thaumarchaeota and what the effect of temperature is on their GDGT composition is essential for constraining the TEX86 proxy. “Ca. Nitrosotenuis uzonensis” is a moderately thermophilic thaumarchaeote enriched from a thermal spring, setting it apart in its environmental niche from the other marine mesophilic members of its order. Indeed, we found that the GDGT composition of “Ca. Nitrosotenuis uzonensis” cultures was distinct from those of other members of its order and was more similar to those of other thermophilic, terrestrial Thaumarchaeota. This suggests that while phylogeny has a strong influence on GDGT distribution, the environmental niche that a thaumarchaeote inhabits also shapes its GDGT composition.


Ethology ◽  
2012 ◽  
Vol 118 (4) ◽  
pp. 341-350 ◽  
Author(s):  
Esteban Fernández-Juricic ◽  
Marcella Deisher ◽  
Amy C. Stark ◽  
Jacquelyn Randolet

2015 ◽  
Vol 23 (4) ◽  
pp. 461-479 ◽  
Author(s):  
Robie W. Macdonald ◽  
Zou Zou A. Kuzyk ◽  
Sophia C. Johannessen

The sediments of the pan-Arctic shelves contribute an important component to the Arctic Ocean ecosystem by providing a habitat for biota (benthos), a repository for organic and inorganic non-conservative substances entering or produced within the ocean, a reactor and source of transformed substances back to the water column, and a mechanism of burial. Sediments interact with ice, ocean, and the surrounding land over a wide range of space and time scales. We discuss the vulnerability of shelf sediment to changes in (i) organic carbon sources, (ii) pathways of sediment and organic carbon supply, and (iii) physical and biogeochemical alteration (diagenesis). Sedimentary environments of the shelves and basins are likely to exhibit a wide variance in their response to global change because of their wide variation in sediment sources, processes, and metabolic conditions. In particular, the Chukchi and Barents shelves are dominated by inflowing waters from oceans to the south, whereas the interior shelves are more closely tied to terrigenous sources due to river inflow and coastal erosion.


Sign in / Sign up

Export Citation Format

Share Document