The physical bases of cell movement. The mechanisms of self-organisation of amoeboid motility

1995 ◽  
Vol 165 (5) ◽  
pp. 555 ◽  
Author(s):  
Yurii M. Romanovskii ◽  
V.A. Teplov
2006 ◽  
Vol 6 ◽  
pp. 1132-1138 ◽  
Author(s):  
Søren Ventegodt ◽  
Tyge Dahl Hermansen ◽  
Trine Flensborg-Madsen ◽  
Maj Lyck Nielsen ◽  
Birgitte Clausen ◽  
...  

In this paper, restricted to describe the ontogenesis of the cell, we discuss the processing of DNA through RNA to proteins and argue that this process is not able to transfer the information necessary to organize the proteins in the cell, but only to transfer the information necessary to form the shape of the proteins. We shortly describe the structure of the information carrying field recruited by the cells that we think is responsible for building the organelles and other cellular structures. We use the cells superior control of its cytoskeleton as an example of how the cell is using an informational field giving the positional information guiding all the local chemical processes behind the cell movement. We describe the information-directed self-organization in cells and argue that this can explain the ontogenesis of the cell. We also suggest the existence of an undiscovered phenomenon behind the information transmitting cell interactions. We conclude that during evolution the cell has developed into an information-guided self-organizing structure. The mystery we want to solve is: what is the mechanical cause and nature of biological information?


Author(s):  
J. P. Revel

Movement of individual cells or of cell sheets and complex patterns of folding play a prominent role in the early developmental stages of the embryo. Our understanding of these processes is based on three- dimensional reconstructions laboriously prepared from serial sections, and from autoradiographic and other studies. Many concepts have also evolved from extrapolation of investigations of cell movement carried out in vitro. The scanning electron microscope now allows us to examine some of these events in situ. It is possible to prepare dissections of embryos and even of tissues of adult animals which reveal existing relationships between various structures more readily than used to be possible vithout an SEM.


Author(s):  
W. J. Larsen ◽  
R. Azarnia ◽  
W. R. Loewenstein

Although the physiological significance of the gap junction remains unspecified, these membrane specializations are now recognized as common to almost all normal cells (excluding adult striated muscle and some nerve cells) and are found in organisms ranging from the coelenterates to man. Since it appears likely that these structures mediate the cell-to-cell movement of ions and small dye molecules in some electrical tissues, we undertook this study with the objective of determining whether gap junctions in inexcitable tissues also mediate cell-to-cell coupling.To test this hypothesis, a coupling, human Lesh-Nyhan (LN) cell was fused with a non-coupling, mouse cl-1D cell, and the hybrids, revertants, and parental cells were analysed for coupling with respect both to ions and fluorescein and for membrane junctions with the freeze fracture technique.


Author(s):  
Ray Keller

The amphibian embryo offers advantages of size, availability, and ease of use with both microsurgical and molecular methods in the analysis of fundamental developmental and cell biological problems. However, conventional wisdom holds that the opacity of this embryo limits the use of methods in optical microscopy to resolve the cell motility underlying the major shape-generating processes in early development.These difficulties have been circumvented by refining and adapting several methods. First, methods of explanting and culturing tissues were developed that expose the deep, nonepithelial cells, as well as the superficial epithelial cells, to the view of the microscope. Second, low angle epi-illumination with video image processing and recording was used to follow patterns of cell movement in large populations of cells. Lastly, cells were labeled with vital, fluorescent dyes, and their behavior recorded, using low-light, fluorescence microscopy and image processing. Using these methods, the details of the cellular protrusive activity that drives the powerful convergence (narrowing)


Author(s):  
Carol Allen

When provided with a suitable solid substrate, tissue cells undergo a rapid conversion from the spherical form expressed in suspension culture to a characteristic flattened morphology. As a result of this conversion, called cell spreading, the cell nucleus and organelles come to occupy a central region of “deep cytoplasm” which slopes steeply into a peripheral “lamellar” region less than 1 pm thick at its outer edge and generally free of cell organelles. Cell spreading is accomplished by a continuous outward repositioning of the lamellar margins. Cell translocation on the substrate results when the activity of the lamellae on one side of the cell become dominant. When this occurs, the cell is “polarized” and moves in the direction of the “leading lamellae”. Careful analysis of tissue cell locomotion by time-lapse microphotography (1) has shown that the deformational movements of the leading lamellae occur in a repeating cycle of advance and retreat in the direction of cell movement and that the rate of such deformations are positively correlated with the speed of cell movement. In the present study, the physical basis for these movements of the cell margin has been examined by comparative light microscopy of living cells with whole-mount electron microscopy of fixed cells. Ultrastructural observations were made on tissue cells grown on Formvar-coated grids, fixed with glutaraldehyde, further processed by critical-point drying, and then photographed in the High Voltage Electron Microscope. This processing and imaging system maintains the 3-dimensional organization of the whole cell, the relationship of the cell to the substrate, and affords a large sample size which facilitates quantitative analysis. Comparative analysis of film records of living cells with the whole-cell micrographs revealed that specific patterns of microfilament organization consistently accompany recognizable stages of lamellar formation and movement. The margins of spreading cells and the leading lamellae of locomoting cells showed a similar pattern of MF repositionings (Figs. 1-4). These results will be discussed in terms of a working model for the mechanics of lamellar motility which includes the following major features: (a) lamellar protrusion results when an intracellular force is exerted at a locally weak area of the cell periphery; (b) the association of cortical MFs with one another determines the local resistance to this force; (c) where MF-to-MF association is weak, the cell periphery expands and some cortical MFs are dragged passively forward; (d) contact of the expanded area with the substrate then triggers the lateral association and reorientation of these cortical MFs into MF bundles parallel to the direction of the expansion; and (e) an active interaction between these MF bundles associated with the cortex of the expanded lamellae and the cortical MFs which remained in the sub-lamellar region then pulls the latter MFs forward toward the expanded area. Thus, the advance of the cell periphery on the substrate occurs in two stages: a passive phase in which some cortical MFs are dragged outward by the force acting to expand the cell periphery, and an active phase in which additional cortical MFs are pulled forward by interaction with the first set. Subsequent interactions between peripheral microfilament bundles and filaments in the deeper cytoplasm could then transmit the advance gained by lamellar expansion to the bulk of the cytoplasm.


2001 ◽  
Vol 11 (PR6) ◽  
pp. Pr6-239-Pr6-246 ◽  
Author(s):  
J. Tabony ◽  
N. Glade ◽  
C. Papaseit ◽  
J. Demongeot
Keyword(s):  

2020 ◽  
pp. 75-81
Author(s):  
Svetlana Alexandrovna Kosareva ◽  

The paper describes the method for increasing the level of self-organisation in students which has been developed by the author. It also contains the method testing results and presents the prospects and risks teachers could face while applying the method in a higher education institution. The purpose of this study is to find out the prospects and risks of applying the method for increasing the level of self-organisation in students and to determine the ways of reducing the risks. Methodology. The author points out the learning approaches which were the basis of developing the method and describes diagnostic methods for determining students’ self-organisation levels. The work focused on increasing each student’s initial level consists of a theoretical and a practical part and includes project activities on creating a study guide. The results of the study. The method developed proved to be effective. It was established by diagnosing the final level of self-organisation in students in the experimental and control groups. The paper considers the advantages of the method among which there is universal character, flexibility, improvements to teacher’s and students’ professional competence, etc. At the same time it is necessary to be aware of the risks due to the increased amount of teacher’s work and the fact that students’ work within the project tends to be monotonous. In conclusion, the prospects of the method for increasing the level of self-organisation in students are related to its advantages and the final results of the work. The risks of its use can be reduced with the help of the measures proposed in the paper.


2018 ◽  
Author(s):  
Stephen Kershaw ◽  
David J Morgan ◽  
Andrew Brass ◽  
James Boyd ◽  
David Spiller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document