scholarly journals Biocontrol Potentials of Plant Growth Promoting Rhizobacteria against Fusarium Wilt Disease of Cucurbit

2013 ◽  
Vol 2 (3) ◽  
pp. 155-161 ◽  
Author(s):  
Avinash T. Shanthi ◽  
Ravishankar R. Vittal

Fusarium spp., are the major soil-borne as well as seed borne pathogens causing wilt and rot diseases in more than 80 plant species including cucurbits. Fusarium spp., causes up to 100 % yield loss in the worldwide. Eleven isolates including three standard isolates were tested both in-vitro and in-vivo. In-vitro assay was done by dual culture method. Maximum inhibition was in case of Fusarium solani by Bacillus cereus MIC5. Sarratia spp. MIC1 antagonized the F. verticillodes and F. solani2. P. aeruginosa MIC2 inhibits all tested isolates F. oxysporum1. P. aeruginosa MTCC2581 suppressed the radial growth rate of F. oxysporum2. The two systemic fungicides used were chlorothalonil + mefenoxam (1000 ppm) and carbendazim (75 ppm to 500 ppm) which checked the growth of F. oxysporum. Carbendazim was more effective compared to mefenoxam + chlorothalonil at all tested concentrations. The crude extract of P. aeruginosa MIC2 developed in chloroform: methanol (9:1) showed a metabolite at Rf - 0.77 which it may be 2,4- diacetylphloroglucinol (DAPG), a broad-spectrum antimicrobial agent. Increased cucurbit seeds germination and seedling vigour was observed in B. amyloliquefaciens MIC6 (68% 1576) and P. aeruginosa MTCC2581 (70% 1929) in primed seeds. Further P. aeruginosa MTCC2581 can be tested in the field against the Fusarium wilt.

2021 ◽  
Vol 6 (2) ◽  
pp. 255-263
Author(s):  
Indah Juwita Sari ◽  
Indria Wahyuni ◽  
Rida Oktorida Khastini ◽  
Ewi Awaliyati ◽  
Andriana Susilowati ◽  
...  

Plant Growth Promoting Bacteria Rhizobacteria (PGPR) is one of the potential bacteria to enhance of Capsicum annuum through inhabitation the growth of pathogenic fungi. This study aimed to characterize PGPR in chili plants (Capsicum annuum). PGPR was isolated from the soil habitat of the red chili plant in Cilegon, Indonesia. Screening was then carried out with the dual culture method on Petri dishes and tested through in vivo method on the red chili plant. The selected bacteria were characterized morphologically, biochemically, and physiologically. The results revealed that there were 14 single isolates of bacteria from the roots of the red chili plants. The five single bacterial isolates, namely Azostobacter, Azospirillum, Pseudomonas, Serratia, and Beijerinckia have good potential as PGPR based on multiple culture screening by producing clear zones and positively effect the growth of chili plants.


2017 ◽  
Vol 53 (No. 2) ◽  
pp. 78-84 ◽  
Author(s):  
Boukerma Lamia ◽  
Benchabane Messaoud ◽  
Charif Ahmed ◽  
Khélif Lakhdar

The potential of Pseudomonas fluorescens PF15 and Pseudomonas putida PP27 to protect tomato plants against Fusarium wilt under greenhouse conditions was evaluated. In vitro antagonism showed a significant inhibition of the pathogen growth (47%) revealed by PF15. However, PP27 presented a 10% rate of the mycelium inhibition. An in situ experiment was conducted with split-root design for induced systemic resistance (ISR) and without split-root design to measure both ISR and antagonistic activities. Fluorescent Pseudomonas revealed a delay in the onset of symptoms and slower kinetics of disease progression compared to the pathogen control. McKinney’s index, which measures the severity of the disease, was reduced by 37–72%, and the levels of infection (incidence) by 7–36%.


2020 ◽  
Vol 14 (2) ◽  
pp. 178-186
Author(s):  
Lisa Novita Arios ◽  
Dwi Suryanto . ◽  
Kiki Nurtjahja . ◽  
Erman Munir .

Assay on ability of endophytic bacteria isolated from peanut to inhibit Sclerotium sp. growth in peanut seedlings.   A study on assay of ability of endophytic bacteria to inhibit Sclerotium sp. in peanut seedling has been done. The bacteria were isolated from peanut healthy plants, while Sclerotium sp. was isolated from infected peanaut plant. Antagonistic assay was conducted by dual culture method.  In vivo assay of inhibiting Sclerotium sp. was conducted by dipping peanut seed in bacterial solution, and planting the seed in soil:compost (3:1) growing media. Six endophytic bacterial isolates showed to inhibit the growth of Sclerotium sp. in vitro. LN1 seemed to inhibit more of Sclerotium sp., while LN5 showed to inhibit less. Two potential isolates LN1 of gram-negative and LN2 of gram-positive using for further study showed to decrease more of dumping off. It also seemed that the isolates increased the seedling height, number of leaves, and dry weight.


Author(s):  
Jaygendra Kumar ◽  
Mukesh Kumar ◽  
Akash Tomar ◽  
. Vaishali ◽  
Pushpendra Kumar ◽  
...  

Trichoderma species are well known for their biocontrol activity which colonize many soil and tuber-borne and foliage plant pathogens. In this study, 12 native isolates of Trichiderma spp were collected from various crop rhizosphere soil samples and characterized them phenotypically based on morphological and cultural features and genotypically based on sequence analysis of internal transcribed spacer (ITS) region-PCR amplification. The results obtained from phenotypic and genotypic observation revealed that isolates were belonged to five different species namely T. asperellum, T. harzianum, T. longibrachiatum, T. koningii and T. koningiopsis. All Trichoderma isolates produced ~600 bp amplicon and phylogenetic analysis revealed that all isolates were grouped with respective species. Further, the antagonistic potential of all the isolates was evaluated against Fusarium spp. following in vitro dual culture method. The results showed that isolates of T. harzianum exhibited maximum growth inhibition activity. The highest rate of inhibition was recorded with T. harzianum isolate TBT6 (87.1%) followed by TBT7 (82.2%), while the least inhibition was observed in T. longibrachiatum isolate TBT10 (59.7%) after 7 days of incubation. The antagonistic T. harzianum isolate TBT6 can be used for development of Trichoderma based bio-formulation and served as bio-control agent against Fusaium spp. under field conditions.


2020 ◽  
Vol 4 (1) ◽  
pp. 47
Author(s):  
Fauziyyah Nahdah ◽  
Noorkomala Sari ◽  
Akhmad Rizali ◽  
Rabiatul Wahdah

<p class="Abstract">Basal plate rot is a major disease on shallot caused by <em>Fusarium oxysporum</em>. Endophytic fungi is promising to use as antagonist agent to the pathogen. Endophyte is microbes that are living in plant cells and have an asymptomatic characteristic. Nowadays, fungal endophyte is believed to produce antimicrobial substances similar with their plant host's natural product. <em>Jatropha curcas</em> is one of the plants containing secondary metabolites that have antifungal activities. The research aimed to study the ability of endophyte from <em>Jatropha curcas</em> to inhibit the growth of <em>Fusarium oxysporum</em>. The dual culture method was used in this research and the data were analyzed by SPSS software. This antagonism test was conducted by 9 isolates endophyte and each plate consisted of 3 replicates. The result revealed endophyte fungal obtaining 9 isolates with the radial growth of 4,5 cm/2 days. Endophytes of <em>Jatropha curcas</em> L. were able to inhibit the growth of <em>Fusarium oxysporum</em> C2. The percentage of inhibition of <em>Fusarium oxysporum </em>causing of root blight diseases was controlled by up 38.27 - 74.48%. The highest percentage of inhibition is gained by B4b and the lowest of it is A2b. Our observations showed that each endophyte has a consistent linear trend. B4b still leaded as the highest strength to inhibit the growth of pathogen on the monitoring of 3, 5, and 7 days. Moreover, the ability of fungi endophyte from <em>Jatropha curcas</em> as antagonist agent to <em>Fusarium oxysporum</em> needs to be further examined by the in vivo method.</p>


2014 ◽  
Vol 2 (2) ◽  
Author(s):  
Fikriyah Shofiah Mawaddah ◽  
Joko Prasetyo ◽  
Muhammad Nurdin

Antraknosa yang disebabkan oleh Colletotrichum gloeosporioides merupakan penyakit pascapanen penting pada buahbuahan. Penelitian ini bertujuan untuk mengetahui efektifitas kitosan dan Trichoderma sp. dalam menghambat pertumbuhan koloni jamur C. gloeosporioides secara in vitro dan mengetahui efektifitas kitosan dan Trichoderma sp. terhadap intensitas penyakit antraknosa yang disebabkan oleh C. gloeosporioides pada buah pisang cavendish. Penelitian dilakukan di Laboratorium Penyakit Tumbuhan, Fakultas Pertanian, Universitas Lampung dari bulan Mei 2013 sampai dengan September 2013. Percobaan ini disusun dalam rancangan acak lengkap (RAL) yang terdiri atas lima perlakuan dan lima ulangan, yaitu kontrol (P0), kitosan (P1), Trichoderma sp. (P2), kombinasi kitosan dan Trichoderma sp. (P3) dan fungisida mankozeb (P4). C. gloeosporioides diperoleh dari isolasi buah pisang yang bergejala antraknosa. Pengujian secara in vitro, perlakuan kitosan konsentrasi 0,75% dicampurkan ke dalam media potato sukrose agar, perlakuan Trichoderma sp. (dual culture method), perlakuan kombinasi kitosan dan Trichoderma sp. dengan mencampurkan kitosan pada media dan dikombinasikan dengan Trichoderma sp. (dual culture method) serta perlakuan fungisida mankozeb konsentrasi 0,1% dicampurkan ke dalam media. Metode tersebut juga digunakan untuk pengujian secara in vivo pada buah pisang. Hasil pengujian secara in vitro, perlakuan kitosan, Trichoderma sp. dan kombinasi kitosan dan Trichoderma sp. efektif menghambat pertumbuhan koloni jamur C. gloeosporioides. Pada uji in vivo, masing-masing perlakuan tidak efektif menghambat intensitas penyakit antraknosa.


2016 ◽  
Vol 25 (4) ◽  
pp. 331 ◽  
Author(s):  
Mutia Erti Dwiastuti ◽  
Melisa N Fajri ◽  
Yunimar Yunimar

<p>Layu yang disebabkan oleh Fusarium spp. merupakan salah satu penyakit penting tanaman stroberi (Fragaria x ananassa<br />Dutch.) di daerah subtropika, yang dapat menggagalkan panen. Penelitian bertujuan untuk mempelajari potensi Trichoderma spp.<br />dalam mengendalikan Fusarium spp. Isolat Trichoderma spp. diisolasi dari rizosfer tanaman stroberi dan Fusarium spp. diisolasi<br />dari tanaman stroberi yang mengalami layu fusarium. Isolat cendawan dimurnikan, dikarakterisasi, dan dibandingkan dengan isolat<br />cendawan acuan. Uji antagonis dilakukan secara in vitro dan in vivo. Uji in vitro dilakukan dengan metode dual culture dan slide<br />culture. Uji in vivo dilakukan di rumah kasa menggunakan dua varietas stroberi, yaitu Santung serta California. Hasil penelitian <br />in vitro memperoleh dua jenis isolat cendawan antagonis, yaitu Trichoderma sp.1 dan Trichoderma sp.2, dan dua jenis cendawan <br />patogen Fusarium, yaitu Fusarium sp.1 dan Fusarium sp.2. Isolat Trichoderma sp.1 memiliki kemampuan antagonisme lebih tinggi<br />dibandingkan dengan isolat Trichoderma sp.2. Isolat Trichoderma sp.1 mampu menghambat pertumbuhan Fusarium sp.1 dan<br />Fusarium sp.2 secara berturut- turut, yaitu 49,7% dan 49,6%. Isolat Trichoderma sp.2 mampu menghambat pertumbuhan Fusarium<br />sp.1 dan Fusarium sp.2 lebih rendah, yaitu sebesar 45,8% dan 43,4%. Mekanisme antagonis yang terjadi antara cendawan antagonis<br />dan patogen pada uji in vitro, yaitu pembelitan dan intervensi hifa. Hasil pada uji in vivo pada perlakuan Trichoderma sebelum<br />Fusarium menunjukkan keefektifan pengendalian paling baik (41,72%) dibanding perlakuan lain. Varietas Santung lebih tahan<br />terhadap serangan patogen dibandingkan varietas California. Implikasi dari hasil penelitian ini adalah, agens hayati Trichoderma<br />spp. lebih optimal digunakan sebagai pencegahan (preventif) tanpa menunggu tanaman terinfeksi penyakit layu fusarium.</p>


1992 ◽  
Vol 38 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Robert M. Zablotowicz ◽  
Caroline M. Press ◽  
Nicola Lyng ◽  
Gerry L. Brown ◽  
Joseph W. Kloepper

The compatibility of a select group of plant growth promoting rhizobacterial strains with chemicals commonly used as seed treatments was investigated. Strains in several genera (Serratia, Pseudomonas, and coryneform-like bacteria) were found to be tolerant to Vitavax RS (containing lindane, carboxin, and thiram), Epic (iprodione), and (or) captan tested in vitro at commercial rates. Six of 10 strains survived equally, and exhibited similar root colonization, on Vitavax RS treated and nontreated seed. Four of seven strains tested (Serratia spp. and P. fluorescens) were likewise found to be compatible with a captan seed treatment on supersweet corn, using the same criteria. Ability of bacteria to grow on pesticide-amended media did not always indicate compatibility with chemical seed treatments in vivo. A greenhouse study demonstrated that enhanced emergence occurred with the coryneform-like strain 44-9 on Vitavax RS treated canola seed grown under conditions favoring disease due to Rhizoctonia solani. The ability to combine plant growth promoting rhizobacterial strains with current agrichemicals for plant growth stimulation and disease control is indicated. Key words: pesticide compatibility, Pseudomonas, agrichemicals, Serratia, damping-off, plant growth promoting rhizobacteria.


2020 ◽  
Vol 18 (1) ◽  
pp. 103-112
Author(s):  
R. A. OLOYEDE ◽  
A. A. ILUPEJU ◽  
O. O. OYELAKIN ◽  
W. R. AJIJOLA

Fusarium wilt is one of the important diseases of cucumber and causes economic loss to farmers. The present study was undertaken to evaluate the potential of rhizosphere lactic acid bacteria as biocontrol agents of Fusarium wilt of cucumber. Lactic acid bacteria (LAB) were isolated and identified from the rhizosphere of five medicinal plants. The in-vitro antagonistic activity of LAB strains on F. oxysporum f.sp. cucumerinum was evaluated by dual culture method. The screen house experiment was then conducted to assess the effect of antagonistic LAB isolates on Fusarium wilt disease incidence in cucumber plants. The antagonistic LAB strains were further characterized using 16S rRNA gene sequencing technique. The total LAB counts of rhizospheric soil samples ranged from 7.0×105 cfu/g to 15.0×105 cfu/g. The LAB isolates were identified as strains of Lactobacillus acidophilus (21.4%), L. plantarum (35.7%), L. fermentum (28.6%), L. alimentarius (7.1%) and L. brevis (7.1%). Treatment of cucumber seeds with antagonistic LAB strains significantly reduced Fusarium wilt of cucumber incidence from 95% to 48%. Lactobacillus fermentum isolated from the rhizosphere of A. indica exhibited strong disease suppression (49.5%). The study therefore revealed that the rhizospheric-LAB could be applied to reduce the manifestation of Fusarium wilt in cucumber.    


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 579
Author(s):  
Carmen Sanjuana Delgado-Ramírez ◽  
Rufina Hernández-Martínez ◽  
Edgardo Sepúlveda

Plant growth-promoting rhizobacteria are often utilized to improve crop health and productivity. Nevertheless, their positive effects can be hindered if they fail to withstand the environmental and ecological conditions of the regions where they are applied. An alternative approach to circumvent this problem is a tailored selection of bacteria for specific agricultural systems. In this work, we evaluated the plant growth promoting and pathogen inhibition activity of rhizobacteria obtained from the rhizosphere of Mariola (Solanum hindsianum), an endemic shrub from Baja California. Eight strains were capable of inhibiting Fusarium oxysporum in vitro, and thirteen strains were found to possess three or more plant-growth-promotion traits. Molecular identification of these strains, using 16 s rRNA partial sequences, identified them as belonging to the genera Arthrobacter, Bacillus, Paenibacillus, Pseudomonas, and Streptomyces. Finally, the effect of selected plant growth-promoting rhizobacteria (PGPR) strains on the growth and suppression of Fusarium wilt in tomato was evaluated. Results showed that these strains improved tomato plants growth under greenhouse conditions and reduced Fusarium wilt effects, as reflected in several variables such as length and weight of roots and stem. This work highlights the potential of native plants related to regionally important crops as a valuable source of beneficial bacteria.


Sign in / Sign up

Export Citation Format

Share Document