scholarly journals Assessing the Relationship among the Land Surface Features: A Geographic Information System (GIS) and Remote Sensing (RS) Based Approach for City Area

2021 ◽  
Vol 8 (2) ◽  
pp. 935-952
Author(s):  
Sharmin Siddika ◽  
Md. Nazmul Haque ◽  
Mizbah Ahmed Sresto

Due to climate change and urbanization, it is important to monitor and evaluate the components of the environment. For this reason, ward-22 and ward-27 of the Khulna City Corporation (KCC) area have been selected for the study. This research seeks to identify the existing land use profile and assess the land surface components such as topography, Normalized Difference Buildup Index (NDBI), Normalized Difference Vegetation Index (NDVI), Normalized Difference Moisture Index (NDMI), Normalized Difference Salinity Index (NDSI) and Land Surface Temperature (LST) to measure the relationships among the land surface components. The land use land cover map shows that about 59% of ward-22 and 71.5% area of ward-27 are built-up areas. Both of the wards contain little amount of water body, vegetation and open space. Both of the wards have residential land use types with commercial purposes on the periphery. Accordingly, 63.32% and 65% of structures of ward-22 and 27 are pucca. The land surface components reveal that both areas contain lower slopes, less vegetation, less moisture, severe salinity, highly built-up areas, and high land surface temperature. The relationships among the land surface components show that NDVI has a negative relation with LST and NDBI whereas NDVI represents a positive correlation with NDMI. On the other hand, NDBI shows a positive correlation with LST whereas NDMI negatively correlates with LST. NDSI and topography reflect no meaningful relationship between NDBI, NDVI, LST, and NDMI. However, the research findings may be essential to city planners and decision-makers for incorporating better urban management at the micro level concerning climate change.

2021 ◽  
Vol 20 (2) ◽  
pp. 1-19
Author(s):  
Tahmid Anam Chowdhury ◽  
◽  
Md. Saiful Islam ◽  

Urban developments in the cities of Bangladesh are causing the depletion of natural land covers over the past several decades. One of the significant implications of the developments is a change in Land Surface Temperature (LST). Through LST distribution in different Land Use Land Cover (LULC) and a statistical association among LST and biophysical indices, i.e., Urban Index (UI), Bare Soil Index (BI), Normalized Difference Builtup Index (NDBI), Normalized Difference Bareness Index (NDBaI), Normalized Difference Vegetation Index (NDVI), and Modified Normalized Difference Water Index (MNDWI), this paper studied the implications of LULC change on the LST in Mymensingh city. Landsat TM and OLI/TIRS satellite images were used to study LULC through the maximum likelihood classification method and LSTs for 1989, 2004, and 2019. The accuracy of LULC classifications was 84.50, 89.50, and 91.00 for three sampling years, respectively. From 1989 to 2019, the area and average LST of the built-up category has been increased by 24.99% and 7.6ºC, respectively. Compared to vegetation and water bodies, built-up and barren soil regions have a greater LST each year. A different machine learning method was applied to simulate LULC and LST in 2034. A remarkable change in both LULC and LST was found through this simulation. If the current changing rate of LULC continues, the built-up area will be 59.42% of the total area, and LST will be 30.05ºC on average in 2034. The LST in 2034 will be more than 29ºC and 31ºC in 59.64% and 23.55% areas of the city, respectively.


2019 ◽  
Vol 11 (24) ◽  
pp. 7056 ◽  
Author(s):  
Jae-Ik Kim ◽  
Myung-Jin Jun ◽  
Chang-Hwan Yeo ◽  
Ki-Hyun Kwon ◽  
Jun Yong Hyun

This study investigated how changes in land surface temperature (LST) during 2004 and 2014 were attributable to zoning-based land use type in Seoul in association with the building coverage ratio (BCR), floor area ratio (FAR), and a normalized difference vegetation index (NDVI). We retrieved LSTs and NDVI data from satellite images, Landsat TM 5 for 2004 and Landsat 8 TIRS for 2014 and combined them with parcel-based land use information, which contained data on BCR, FAR, and zoning-based land use type. The descriptive analysis results showed a rise in LST for the low- and medium-density residential land, whereas significant LST decreases were found in high-density residential, semi-residential, and commercial areas over the time period. Statistical results further supported these findings, yielding statistically significant negative coefficient values for all interaction variables between higher-density land use types and a year-based dummy variable. The findings appear to be related to residential densification involving the provision of more high-rise apartment complexes and government efforts to secure more parks and green spaces through urban redevelopment and renewal projects.


2018 ◽  
Vol 19 (2) ◽  
pp. 145 ◽  
Author(s):  
Widya Ningrum ◽  
Ida Narulita

ABSTRACTThe rapid population growth and development of infrastructure in the Bandung basin has triggered an uncontrolled land use changes. The changes of land use will impact on land surface temperature distribution. Finally, these changes will give influence on climate. Land surface temperature is one of the important climatic elements in the energy balance. Changes in land surface temperature variations will potentially change other elements of the climate. The purpose of this paper is to obtain and to analyze the changes of surface temperature distribution in Bandung basin using multi temporal satellite data processing that is Landsat 5 and Landsat 8 in 2004, 2009 and 2014. Near Infrared Channel (Near Infrared/NIR) and visible wave channels (Visible band) have used to obtain the value Normalized Difference Vegetation Index/NDVI index and Albedo. Land and vegetation emissivity value and thermal band have used to determine land surface temperature. The results showed that the surface temperature distribution of Bandung basin has been changes characterized by the presence of two hotspot characters i.e. hot areas in urban and hot areas in non-urban area. The area is characterized by decreasing vegetation index values, increasing albedo values and increasing on surface temperature.  Land Surface Temperatures average value increased by 1.3°C. Land surface temperature tends to rise supposed as a result of changes in vegetated area into open area and the build area  Keywords: land surface temperature, normalized difference vegetation index, albedoABSTRAKPesatnya pertumbuhan penduduk dan perkembangan infrastruktur di cekungan Bandung telah memicu perubahan tutupan lahan yang tidak terkendali. Perubahan tutupan lahan akan mempengaruhi distribusi suhu permukaan. Hal tersebut pada akhirnya nanti akan mempengaruhi iklim. Suhu permukaan merupakan salah satu unsur iklim yang penting dalam neraca energi. Perubahan variasi suhu permukaan berpotensi mengubah unsur unsur iklim yang lainnya. Tujuan makalah ini adalah untuk mengetahui dan menganalisis perubahan distribusi suhu permukaan di cekungan Bandung melalui pengolahan data satelit multi waktu yaitu Landsat 5 dan Landsat 8 tahun 2004, 2009, 2014 dan 2016. Kanal Inframerah Dekat (Near Infrared/NIR) dan kanal gelombang tampak (Visible band) digunakan untuk memperoleh nilai Indeks Kehijauan Vegetasi (Normalized Difference Vegetation Index/NDVI) dan Albedo. Nilai emisivitas dari tanah dan vegetasi serta Band termal digunakan untuk menentukan nilai Suhu Permukaan Tanah.Hasil penelitian menunjukkan bahwa di cekungan Bandung telah terjadi perubahan distribusi suhu permukaan yang dicirikan oleh adanya dua karakter hotspot yaitu daerah panas di daerah urban dan daerah panas di daerah non-urban. Daerah tersebut dicirikan menurunnya nilai indeks vegetasi, menurunnya nilai albedo dan meningkatnya nilai suhu permukaan tanah. Nilai rataan Suhu Permukaan Tanah tahun 2005 - 2014 meningkat sebesar 1.3°C. Kecenderungan naik ini diduga sebagai akibat adanya perubahan tutupan lahan bervegetasi menjadi daerah yang lebih terbuka dan daerah terbangun.Kata kunci: suhu permukaan, indeks kehijauan vegetasi, albedo 


Author(s):  
Christopher Ihinegbu ◽  
Taiwo Ogunwumi

AbstractDrought is the absence or below-required supply of precipitation, runoff and or moisture for an extended time period. Modelling drought is relevant in assessing drought incidence and pattern. This study aimed to model the spatial variation and incidence of the 2018 drought in Brandenburg using GIS and remote sensing. To achieve this, we employed a Multi-Criteria Approach (MCA) by using three parameters including Precipitation, Land Surface Temperature and Normalized Difference Vegetation Index (NDVI). We acquired the precipitation data from Deutsche Wetterdienst, Land Surface Temperature and NDVI from Landsat 8 imageries on the USGS Earth Explorer. The datasets were analyzed using ArcGIS 10.7. The information from these three datasets was used as parameters in assessing drought prevalence using the MCA. The MCA was used in developing the drought model, ‘PLAN’, which was used to classify the study area into three levels/zones of drought prevalence: moderate, high and extreme drought. We went further to quantify the agricultural areas affected by drought in the study area by integrating the land use map. Results revealed that 92% of the study area was severely and highly affected by drought especially in districts of Oberhavel, Uckermark, Potsdam-Staedte, and Teltow-Flaeming. Finding also revealed that 77.54% of the total agricultural land falls within the high drought zones. We advocated for the application of drought models (such as ‘PLAN’), that incorporates flexibility (tailoring to study needs) and multi-criteria (robustness) in drought assessment. We also suggested that adaptive drought management should be championed using drought prevalence mapping.


2021 ◽  
Vol 13 (2) ◽  
pp. 323
Author(s):  
Liang Chen ◽  
Xuelei Wang ◽  
Xiaobin Cai ◽  
Chao Yang ◽  
Xiaorong Lu

Rapid urbanization greatly alters land surface vegetation cover and heat distribution, leading to the development of the urban heat island (UHI) effect and seriously affecting the healthy development of cities and the comfort of living. As an indicator of urban health and livability, monitoring the distribution of land surface temperature (LST) and discovering its main impacting factors are receiving increasing attention in the effort to develop cities more sustainably. In this study, we analyzed the spatial distribution patterns of LST of the city of Wuhan, China, from 2013 to 2019. We detected hot and cold poles in four seasons through clustering and outlier analysis (based on Anselin local Moran’s I) of LST. Furthermore, we introduced the geographical detector model to quantify the impact of six physical and socio-economic factors, including the digital elevation model (DEM), index-based built-up index (IBI), modified normalized difference water index (MNDWI), normalized difference vegetation index (NDVI), population, and Gross Domestic Product (GDP) on the LST distribution of Wuhan. Finally, to identify the influence of land cover on temperature, the LST of croplands, woodlands, grasslands, and built-up areas was analyzed. The results showed that low temperatures are mainly distributed over water and woodland areas, followed by grasslands; high temperatures are mainly concentrated over built-up areas. The maximum temperature difference between land covers occurs in spring and summer, while this difference can be ignored in winter. MNDWI, IBI, and NDVI are the key driving factors of the thermal values change in Wuhan, especially of their interaction. We found that the temperature of water area and urban green space (woodlands and grasslands) tends to be 5.4 °C and 2.6 °C lower than that of built-up areas. Our research results can contribute to the urban planning and urban greening of Wuhan and promote the healthy and sustainable development of the city.


2021 ◽  
Author(s):  
Rasha Abou Samra

Abstract Land surface temperature (LST) is a significant environmental variable that is appreciably influenced by land use /land cover changes. The main goal of this research was to quantify the impacts of land use/land cover change (LULC) from the drying of Toshka Lakes on LST by remote sensing and GIS techniques. Landsat series TM and OLI satellite images were used to estimate LST from 2001 to 2019. Automated Water Extraction Index (AWEI) was applied to extract water bodies from the research area. Optimized Soil-Adjusted Vegetation Index (OSAVI) was utilized to predict the reclaimed land in the Toshka region until 2019. The results indicated a decrease in the lakes by about 1517.79 km2 with an average increase in LST by about 25.02 °C between 2001 and 2019. It was observed that the dried areas of the lakes were converted to bare soil and are covered by salt crusts. The results indicated that the land use change was a significant driver for the increased LST. The mean annual LST increased considerably by 0.6 °C/y between 2001 and 2019. A strong negative correlation between LST and Toshka Lakes area (R-square = 0.98) estimated from regression analysis implied that Toshka Lakes drying considerably affected the microclimate of the study area. Severe drought conditions, soil degradation, and many environmental issues were predicted due to the rise of LST in the research area. There is an urgent need to develop favorable strategies for sustainable environmental management in the Toshka region.


2019 ◽  
Vol 11 (16) ◽  
pp. 1947 ◽  
Author(s):  
Lei Ji ◽  
Gabriel B. Senay ◽  
Naga M. Velpuri ◽  
Stefanie Kagone

The Operational Simplified Surface Energy Balance (SSEBop) model uses the principle of satellite psychrometry to produce spatially explicit actual evapotranspiration (ETa) with remotely sensed and weather data. The temperature difference (dT) in the model is a predefined parameter quantifying the difference between surface temperature at bare soil and air temperature at canopy level. Because dT is derived from the average-sky net radiation based primarily on climate data, validation of the dT estimation is critical for assuring a high-quality ETa product. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) data to evaluate the SSEBop dT estimation for the conterminous United States. MODIS data (2008–2017) were processed to compute the 10-year average land surface temperature (LST) and normalized difference vegetation index (NDVI) at 1 km resolution and 8-day interval. The observed dT (dTo) was computed from the LST difference between hot (NDVI < 0.25) and cold (NDVI > 0.7) pixels within each 2° × 2° sampling block. There were enough hot and cold pixels within each block to create dTo timeseries in the West Coast and South-Central regions. The comparison of dTo and modeled dT (dTm) showed high agreement, with a bias of 0.8 K and a correlation coefficient of 0.88 on average. This study concludes that the dTm estimation from the SSEBop model is reliable, which further assures the accuracy of the ETa estimation.


2021 ◽  
Vol 13 (1) ◽  
pp. 1561-1577
Author(s):  
Sajjad Hussain ◽  
Muhammad Mubeen ◽  
Ashfaq Ahmad ◽  
Nasir Masood ◽  
Hafiz Mohkum Hammad ◽  
...  

Abstract The rapid increase in urbanization has an important effect on cropping pattern and land use/land cover (LULC) through replacing areas of vegetation with commercial and residential coverage, thereby increasing the land surface temperature (LST). The LST information is significant to understand the environmental changes, urban climatology, anthropogenic activities, and ecological interactions, etc. Using remote sensing (RS) data, the present research provides a comprehensive study of LULC and LST changes in water scarce and climate prone Southern Punjab (Multan region), Pakistan, for 30 years (from 1990 to 2020). For this research, Landsat images were processed through supervised classification with maps of the Multan region. The LULC changes showed that sugarcane and rice (decreased by 2.9 and 1.6%, respectively) had less volatility of variation in comparison with both wheat and cotton (decreased by 5.3 and 6.6%, respectively). The analysis of normalized difference vegetation index (NDVI) showed that the vegetation decreased in the region both in minimum value (−0.05 [1990] to −0.15 [2020]) and maximum value (0.6 [1990] to 0.54 [2020]). The results showed that the built-up area was increased 3.5% during 1990–2020, and these were some of the major changes which increased the LST (from 27.6 to 28.5°C) in the study area. The significant regression in our study clearly shows that NDVI and LST are negatively correlated with each other. The results suggested that increasing temperature in growing period had a greatest effect on all types of vegetation. Crop-based classification aids water policy managers and analysts to make a better policy with enhanced information based on the extent of the natural resources. So, the study of dynamics in major crops and surface temperature through satellite RS can play an important role in the rural development and planning for food security in the study area.


Sign in / Sign up

Export Citation Format

Share Document