A Study on Boiler Corrosion and Dust Emission Characteristics of Natural Gas Turbine Power Plants

2018 ◽  
Vol 18 (1) ◽  
pp. 117-126
Author(s):  
Buju Gong ◽  
◽  
Jeongmin Park ◽  
Jeonghun Kim ◽  
Jonghyeon Kim ◽  
...  
2000 ◽  
Vol 124 (1) ◽  
pp. 89-95 ◽  
Author(s):  
G. Lozza ◽  
P. Chiesa

This paper discusses novel schemes of combined cycle, where natural gas is chemically treated to remove carbon, rather than being directly used as fuel. Carbon conversion to CO2 is achieved before gas turbine combustion. The first part of the paper discussed plant configurations based on natural gas partial oxidation to produce carbon monoxide, converted to carbon dioxide by shift reaction and therefore separated from the fuel gas. The second part will address methane reforming as a starting reaction to achieve the same goal. Plant configuration and performance differs from the previous case because reforming is endothermic and requires high temperature heat and low operating pressure to obtain an elevated carbon conversion. The performance estimation shows that the reformer configuration has a lower efficiency and power output than the systems addressed in Part I. To improve the results, a reheat gas turbine can be used, with different characteristics from commercial machines. The thermodynamic efficiency of the systems of the two papers is compared by an exergetic analysis. The economic performance of natural gas fired power plants including CO2 sequestration is therefore addressed, finding a superiority of the partial oxidation system with chemical absorption. The additional cost of the kWh, due to the ability of CO2 capturing, can be estimated at about 13–14 mill$/kWh.


Author(s):  
Vikram Muralidharan ◽  
Matthieu Vierling

Power generation in south Asia has witnessed a steep fall due to the shortage of natural gas supplies for power plants and poor water storage in reservoirs for low hydro power generation. Due to the current economic scenario, there is worldwide pressure to secure and make more gas and oil available to support global power needs. With constrained fuel sources and increasing environmental focus, the quest for higher efficiency would be imminent. Natural gas combined cycle plants operate at a very high efficiency, increasing the demand for gas. At the same time, countries may continue to look for alternate fuels such as coal and liquid fuels, including crude and residual oil, to increase energy stability and security. In over the past few decades, the technology for refining crude oil has gone through a significant transformation. With the advanced refining process, there are additional lighter distillates produced from crude that could significantly change the quality of residual oil used for producing heavy fuel. Using poor quality residual fuel in a gas turbine to generate power could have many challenges with regards to availability and efficiency of a gas turbine. The fuel needs to be treated prior to combustion and needs a frequent turbine cleaning to recover the lost performance due to fouling. This paper will discuss GE’s recently developed gas turbine features, including automatic water wash, smart cooldown and model based control (MBC) firing temperature control. These features could significantly increase availability and improve the average performance of heavy fuel oil (HFO). The duration of the gas turbine offline water wash sequence and the rate of output degradation due to fouling can be considerably reduced.


Gas Turbines ◽  
10.5772/10208 ◽  
2010 ◽  
Author(s):  
Z.R. Ismagilov ◽  
M.A. Kerzhentsev ◽  
S.A. Yashnik ◽  
N.V. Shikina ◽  
A.N. Zagoruiko ◽  
...  

Author(s):  
Sadahiro Ohno ◽  
Hiroyuki Yamazaki ◽  
Naoki Hagi ◽  
Hidehiko Nishimura

Worldwide environmental concerns are placing center focus on effective utilization of energy and carbon dioxide emission reductions. The power generation industry has engaged in the replacement of existing aged thermal power plants with state-of-the-art natural gas fired power plants capable of achieving considerable reductions in energy consumption and emissions of green house gases. The replacement of three exiting 175MW heavy oil and coal-firing power plants with a highly effective 446MW gas-firing combined cycle power plant owned and operated by Tohoku Electric Power Company is one example of this effort. The construction of the new Sendai thermal power station, Unit No.4 started in November, 2007 achieving commercial operation in July, 2010. Mitsubishi Heavy Industries most recent 50Hz F class gas turbine upgrade, the M701F4 was adopted for this project. This engine is based on the successful M701F3 gas turbine with a 6% air flow increase and a slight bump of the turbine inlet temperature in order to achieve better thermal efficiency and more power output. The application of these advanced technologies resulted in a plant thermal efficiency of approximately 58% LHV of the new unit from the original 43% of the previous coal-firing units. The application of these advanced technologies and the use of natural gas resulted in a 2/3 carbon-dioxide emissions reduction.


2006 ◽  
Vol 129 (3) ◽  
pp. 637-647 ◽  
Author(s):  
Mun Roy Yap ◽  
Ting Wang

Biomass can be converted to energy via direct combustion or thermochemical conversion to liquid or gas fuels. This study focuses on burning producer gases derived from gasifying biomass wastes to produce power. Since the producer gases are usually of low calorific values (LCV), power plant performance under various operating conditions has not yet been proven. In this study, system performance calculations are conducted for 5MWe power plants. The power plants considered include simple gas turbine systems, steam turbine systems, combined cycle systems, and steam injection gas turbine systems using the producer gas with low calorific values at approximately 30% and 15% of the natural gas heating value (on a mass basis). The LCV fuels are shown to impose high compressor back pressure and produce increased power output due to increased fuel flow. Turbine nozzle throat area is adjusted to accommodate additional fuel flows to allow the compressor to operate within safety margin. The best performance occurs when the designed pressure ratio is maintained by widening nozzle openings, even though the turbine inlet pressure is reduced under this adjustment. Power augmentations under four different ambient conditions are calculated by employing gas turbine inlet fog cooling. Comparison between inlet fog cooling and steam injection using the same amount of water mass flow indicates that steam injection is less effective than inlet fog cooling in augmenting power output. Maximizing steam injection, at the expense of supplying the steam to the steam turbine, significantly reduces both the efficiency and the output power of the combined cycle. This study indicates that the performance of gas turbine and combined cycle systems fueled by the LCV fuels could be very different from the familiar behavior of natural gas fired systems. Care must be taken if on-shelf gas turbines are modified to burn LCV fuels.


Author(s):  
Washington Orlando Irrazabal Bohorquez ◽  
Joa˜o Roberto Barbosa ◽  
Luiz Augusto Horta Nogueira ◽  
Electo E. Silva Lora

The operational rules for the electricity markets in Latin America are changing at the same time that the electricity power plants are being subjected to stronger environmental restrictions, fierce competition and free market rules. This is forcing the conventional power plants owners to evaluate the operation of their power plants. Those thermal power plants were built between the 1960’s and the 1990’s. They are old and inefficient, therefore generating expensive electricity and polluting the environment. This study presents the repowering of thermal power plants based on the analysis of three basic concepts: the thermal configuration of the different technological solutions, the costs of the generated electricity and the environmental impact produced by the decrease of the pollutants generated during the electricity production. The case study for the present paper is an Ecuadorian 73 MWe power output steam power plant erected at the end of the 1970’s and has been operating continuously for over 30 years. Six repowering options are studied, focusing the increase of the installed capacity and thermal efficiency on the baseline case. Numerical simulations the seven thermal power plants are evaluated as follows: A. Modified Rankine cycle (73 MWe) with superheating and regeneration, one conventional boiler burning fuel oil and one old steam turbine. B. Fully-fired combined cycle (240 MWe) with two gas turbines burning natural gas, one recuperative boiler and one old steam turbine. C. Fully-fired combined cycle (235 MWe) with one gas turbine burning natural gas, one recuperative boiler and one old steam turbine. D. Fully-fired combined cycle (242 MWe) with one gas turbine burning natural gas, one recuperative boiler and one old steam turbine. The gas turbine has water injection in the combustion chamber. E. Fully-fired combined cycle (242 MWe) with one gas turbine burning natural gas, one recuperative boiler with supplementary burners and one old steam turbine. The gas turbine has steam injection in the combustion chamber. F. Hybrid combined cycle (235 MWe) with one gas turbine burning natural gas, one recuperative boiler with supplementary burners, one old steam boiler burning natural gas and one old steam turbine. G. Hybrid combined cycle (235 MWe) with one gas turbine burning diesel fuel, one recuperative boiler with supplementary burners, one old steam boiler burning fuel oil and one old steam turbine. All the repowering models show higher efficiency when compared with the Rankine cycle [2, 5]. The thermal cycle efficiency is improved from 28% to 50%. The generated electricity costs are reduced to about 50% when the old power plant is converted to a combined cycle one. When a Rankine cycle power plant burning fuel oil is modified to combined cycle burning natural gas, the CO2 specific emissions by kWh are reduced by about 40%. It is concluded that upgrading older thermal power plants is often a cost-effective method for increasing the power output, improving efficiency and reducing emissions [2, 7].


Author(s):  
Jeffrey Goldmeer ◽  
Paul Glaser ◽  
Bassam Mohammad

Abstract The Kingdom of Saudi Arabia has seen significant transformation in power generation in the past 10 years. There has been an increase in the number of F-class combined cycle power plants being developed and brought into commercial operation. There has also been a shift to the use of natural gas as primary fuel. At the same time, there has been an interest in switching the back-up fuel for new power plants from refined distillates to domestic crude oils. Both Arabian Super Light (ASL) and Arabian Extra Light (AXL) have been proposed for use in new F-class gas turbine combined cycle power plants. This paper provides details on the combustion evaluations of ASL and AXL, as well as the first field usage of ASL in a gas turbine.


2013 ◽  
Vol 135 (02) ◽  
pp. 30-35
Author(s):  
Lee S. Langston

This article presents a study on new electric power gas turbines and the advent of shale natural gas, which now are upending electrical energy markets. Energy Information Administration (EIA) results show that total electrical production cost for a conventional coal plant would be 9.8 cents/kWh, while a conventional natural gas fueled gas turbine combined cycle plant would be a much lower at 6.6 cents/kWh. Furthermore, EIA estimates that 70% of new US power plants will be fueled by natural gas. Gas turbines are the prime movers for the modern combined cycle power plant. On the natural gas side of the recently upended electrical energy markets, new shale gas production and the continued development of worldwide liquefied natural gas (LNG) facilities provide the other element of synergism. The US natural gas prices are now low enough to compete directly with coal. The study concludes that the natural gas fueled gas turbine will continue to be a growing part of the world’s electric power generation.


Author(s):  
Ram G. Narula

Tightly regulated and state-controlled utilities are rapidly changing into a competitive, market-driven industry, as private power development is being actively pursued worldwide. Accelerated economic growth in developing countries has fueled a massive growth in the power sector. Gas turbine based power plants have become an attractive option; however, many of these developing countries have limited supplies of conventional gas turbine fuels, namely natural gas or distillate oil. Therefore, power developers are seeking alternative fuels. This paper discusses the balance-of-plant (BOP) considerations and economics of using alternative fuels such as liquefied natural gas (LNG), liquefied petroleum gas (LPG), naphtha, and crude/heavy oils.


Sign in / Sign up

Export Citation Format

Share Document