scholarly journals Synthesis and characterization of nanoscale composite particles formed by 2D layers of Cu-Fe sulfide and Mg-based hydroxide

Author(s):  
Yuri Mikhlin ◽  
Roman Borisov ◽  
Sergey Vorobyev ◽  
Yevgeny Tomashevich ◽  
Alexander Romanchenko ◽  
...  

Two-dimensional phenomena are attracting enormous interest at present and the search for novel 2D materials is very challenging. We propose here the layered material valleriite composed of altering atomic sheets of Cu-Fe sulfide and Mg-based hydroxide synthesized via a simple hydrothermal pathway as particles of 50-200 nm in the lateral size and 10-20 nm thick. The solid products and aqueous colloids prepared with various precursor ratios were examined using XRD, TEM, EDS, X-ray photoelectron spectroscopy (XPS), reflection electron energy loss spectroscopy (REELS), Raman, Mössbauer, UV-vis-NIR spectroscopies, magnetic, dynamic light scattering, zeta potential measurements. The material properties are largely determined by the narrow-gap (less than 0.5 eV) sulfide layers containing Cu+ and Fe3+ cations, monosulfide and minor polysulfide anions but are strongly affected by the hydroxide counterparts. Particularly, Fe distribution between sulfide (55-90%) and magnesium hydroxide layers is controlled through insertion of Al into the hydroxide part and by Cr and Co dopants entering both layers. Room-temperature Mössbauer signals of paramagnetic Fe3+ transformed to several Zeeman sextets with hyperfine magnetic fields up to 500 kOe in the sulfide layers at 4 K. Paramagnetic or more complicated characters were observed for valleriites with higher and lower Fe concentrations in hydroxide sheets, respectively. Valleriite colloids showed negative zeta potentials, suggesting negative electric charging of the hydroxide sheets, and optical absorption maxima between 500 nm and 700 nm, also depended on the Fe distribution. The last features observed also in the REELS spectra may be due to localized surface plasmon or, more likely, quasi-static dielectric resonance. The tunable composition, electronic, magnetic, optic and surface properties highlight valleriites as a rich platform for novel 2D composites promising for numerous applications.

2022 ◽  
Author(s):  
Yuri Mikhlin ◽  
Roman Borisov ◽  
Sergey Vorobyev ◽  
Yevgeny Tomashevich ◽  
Alexander Romanchenko ◽  
...  

We introduce here a multifunctional material composed of alternating atomic sulfide sheets close to CuFeS2 and Mg-based hydroxide ones (valleriite), which are assembled due to their electric charges of opposite sign. Valleriite particles of 50-200 nm in the lateral size and 10-20 nm thick were synthesized via a simple hydrothermal pathway using various concentrations of precursors and dopants, and examined with XRD, TEM, EDS, X-ray photoelectron spectroscopy, reflection electron energy loss spectroscopy (REELS), Mössbauer, Raman and UV-vis-NIR spectroscopies, magnetic, dynamic light scattering, zeta potential measurements. The electronic, magnetic and optical characteristics are found to be critically dependent of the charge (electron density) at the narrow-gap sulfide layers containing Cu+ and Fe3+ cations, and can be tuned via the composition of hydroxide part. Particularly, substitution of Mg2+ with Al3+ increases the negative charge of the hydroxide layers and reduces the content of Fe3+-OH centers (10-45% of total iron); the effects of Cr and Co dopants entering both layers are more complicated. Mössbauer doublets of paramagnetic Fe3+ detected at room temperature transform to several Zeeman sextets at 4.2 K; the hyperfine fields up to 500 kOe and complex magnetic behavior, but not pure paramagnetism or antiferromagnetism, were observed for valleriites with the higher positive charge of the sulfide sheets, probably due to the depopulation of the minority-spin 3d states of S-bonded Fe3+ ions. Aqueous colloids of valleriite show optical absorption at 500 - 750 nm, which, along with the peaks at the same energies in REELS, may arise due to quasi-static dielectric resonance involving the vacant Fe 3d band and being dependent on the composition of both layers too. These and other findings call attention to the of valleriites as a new rich family of 2D materials for a variety of potential applications.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 202
Author(s):  
Miranda Martinez ◽  
Anil R. Chourasia

The Ti/SnO2 interface has been investigated in situ via the technique of x-ray photoelectron spectroscopy. Thin films (in the range from 0.3 to 1.1 nm) of titanium were deposited on SnO2 substrates via the e-beam technique. The deposition was carried out at two different substrate temperatures, namely room temperature and 200 °C. The photoelectron spectra of tin and titanium in the samples were found to exhibit significant differences upon comparison with the corresponding elemental and the oxide spectra. These changes result from chemical interaction between SnO2 and the titanium overlayer at the interface. The SnO2 was observed to be reduced to elemental tin while the titanium overlayer was observed to become oxidized. Complete reduction of SnO2 to elemental tin did not occur even for the lowest thickness of the titanium overlayer. The interfaces in both the types of the samples were observed to consist of elemental Sn, SnO2, elemental titanium, TiO2, and Ti-suboxide. The relative percentages of the constituents at the interface have been estimated by curve fitting the spectral data with the corresponding elemental and the oxide spectra. In the 200 °C samples, thermal diffusion of the titanium overlayer was observed. This resulted in the complete oxidation of the titanium overlayer to TiO2 upto a thickness of 0.9 nm of the overlayer. Elemental titanium resulting from the unreacted overlayer was observed to be more in the room temperature samples. The room temperature samples showed variation around 20% for the Ti-suboxide while an increasing trend was observed in the 200 °C samples.


1992 ◽  
Vol 286 ◽  
Author(s):  
Lide Zhang ◽  
Chimei Mo ◽  
Tao Wang ◽  
Cunyi Xie

ABSTRACTNanostructured silicon nitride solids (NANO–SSNS) were investigated by x–ray photoelectron spectroscopy (XPS), electron spin resonance (ESR) and dielectric measurements. It is found that the dielectric constant of NANO–SSNS depends strongly on the measuring frequency, f. When f<100Hz, at room temperature it is forty times as much as that of conventional Si3N4. ESR measurements show that a large number of unbinding electrons exist in interfaces. This suggests that the NANO–SSNS possess strong polarity. The study on the bond properties indicates that a large number of unsaturated and dangling bonds exist in interfaces of NANO–SSNS.


1993 ◽  
Vol 8 (10) ◽  
pp. 2679-2685 ◽  
Author(s):  
P. Moretti ◽  
B. Canut ◽  
S.M.M. Ramos ◽  
R. Brenier ◽  
P. Thévenard ◽  
...  

LiNbO3 single crystals were implanted at room temperature with Eu+ ions at 70 keV with fluence ranging from 0.5 to 5 × 1016 ions · cm−2. The damage in the implanted layer has been investigated by Channeling Rutherford Backscattering (RBS-C), and the oxidation states of the cations have been determined by x-ray photoelectron spectroscopy (XPS). Following implantation, a fully amorphized layer of 60 nm is generated, even for the lowest fluence employed. Subsequent annealing in air, in the range 800–1250 K, was applied to restore tentatively the crystallinity and promote the substitutional incorporation of Eu in the crystal. Only a partial recrystallization of the damaged layer was observed. For as-implanted samples, XPS spectra clearly reveal europium in Eu2+ and Eu3+ states, and the Nb5+ ions are driven to lower charge states.


2010 ◽  
Vol 663-665 ◽  
pp. 243-246
Author(s):  
Han Mei Hu ◽  
Chong Hai Deng ◽  
Qiang Fang ◽  
Ya Gao ◽  
Meng Wei Song

In this paper, we report a simple two-step approach (microwave-calcinating) to prepare skin-colored N-doped ZnO nanocrystals. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS) and UV-visible absorption were used to characterize the as-synthesized products. The FESEM results reveal the products mainly take on the morphology of porous flake constructed by 20 nm nanoparticles. UV-Vis spectrum shows a strong absorption peak located at 384nm.


Author(s):  
T. Malis ◽  
M. C. Chaturvedi

Ottawa, Ontario, Canada. KlA 0G1 Winnipeg, Manitoba, Canada. R3T 2N2 Energy dispersive X-ray analysis (EDS) has been used in conjunction with STEM microscopy to characterize interfacial segregation. Segregation via solute-vacancy pair migration to grain boundaries has been proposed to influence the hydrogen embrittlement, or stress corrosion cracking, of Al-Zn-Mg alloys. In addition, it has been seen that substantial variations exist in the distribution of boundary precipitates in such alloys. Thus, there is a need for more rigorous characterization of boundary segregation than the normal approach of obtaining elemental profiles across boundaries. Accordingly, specimens of A1 8-wt% Mg were water-quenched from 350°C, aged at room temperature, and EDS profiles were obtained along suitable boundaries from thin foils of both conditions. The traces were in the form of 10-15 point analyses (nominal beam diameter of 20 nm) spaced at 100 nm intervals along the boundary.


2001 ◽  
Vol 7 (S2) ◽  
pp. 1094-1095
Author(s):  
K. Sun ◽  
J. Liu ◽  
N.D. Browning

Antimony-doped tin oxide (ATO) catalysts are used for the oxidation of propylene to acrolein, the ammoxidation of propylene to acrylonitrile and the oxidative dehydrogenation of butanes to 1,3- butadiene. The distribution and valence states of Sb in ATOs are key in determining their catalytic activities. While these materials have been subjects of intensive studies for more than 20 years, X-ray photoelectron spectroscopy, Mössbauer spectrometry, and X-ray absorption spectroscopy4 have so far provided only indirect data for the distribution of Sb and its valence states. in particular, while has been hypothesized that the tin (IV) oxide contains Sb (V) within the bulk lattice and Sb (III) located at surface sites, no direct experimental evidence for this has been provided.Here we use electron energy loss spectroscopy (EELS) combined with Z-contrast imaging in a JEOL 2010F field emission STEM/TEM operating at 200 KV to analyze ATO catalysts.


2013 ◽  
Vol 543 ◽  
pp. 277-280
Author(s):  
Marius Dobromir ◽  
Alina Vasilica Manole ◽  
Simina Rebegea ◽  
Radu Apetrei ◽  
Maria Neagu ◽  
...  

Rutile N-doped TiO2thin films were grown by RF magnetron sputtering on amorphous and crystalline substrates at room temperature. The surface elemental analysis, investigated by X-ray photoelectron spectroscopy indicated that the nitrogen content of the films could be adjusted up to values as high as 4.1 at.%. As demonstrated by the X-ray diffraction data, the as-deposited films (100 200 nm thick) showed no detectable crystalline structure, while after successive annealing in air for one hour at 400°C, 500°C and 600°C, the (110) rutile peaks occurred gradually as dominant features. The rutile phase in the films was confirmed by the band gap values of the deposited materials, which stabilized at 3.1 eV, for the thin films having 200 nm thicknesses.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 558
Author(s):  
Wenhui Zhu ◽  
Caiyun Zhang ◽  
Yali Chen ◽  
Qiliang Deng

Photothermal materials are attracting more and more attention. In this research, we synthesized a ferrocene-containing polymer with magnetism and photothermal properties. The resulting polymer was characterized by Fourier-transform infrared (FT-IR), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Its photo-thermocatalytic activity was investigated by choosing methylene blue (MB) as a model compound. The degradation percent of MB under an irradiated 808 nm laser reaches 99.5% within 15 min, and the degradation rate is 0.5517 min−1, which is 145 times more than that of room temperature degradation. Under irradiation with simulated sunlight, the degradation rate is 0.0092 min−1, which is approximately 2.5 times more than that of room temperature degradation. The present study may open up a feasible route to degrade organic pollutants.


1992 ◽  
Vol 270 ◽  
Author(s):  
Haojie Yuan ◽  
R. Stanley Williams

ABSTRACTThin films of pure germanium-carbon alloys (GexC1−x with x ≈ 0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) have been grown on Si(100) and A12O3 (0001) substrates by pulsed laser ablation in a high vacuum chamber. The films were analyzed by x-ray θ-2θ diffraction (XRD), x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), conductivity measurements and optical absorption spectroscopy. The analyses of these new materials showed that films of all compositions were amorphous, free of contamination and uniform in composition. By changing the film composition, the optical band gap of these semiconducting films was varied from 0.00eV to 0.85eV for x = 0.0 to 1.0 respectively. According to the AES results, the carbon atoms in the Ge-C alloy thin film samples has a bonding configuration that is a mixture of sp2 and sp3 hybridizations.


Sign in / Sign up

Export Citation Format

Share Document