scholarly journals ICP-MS Analysis of Mercury in Fish: Exploration of Method Validation, Matrix Effect, and Kinetic Energy Discrimination

Author(s):  
Wonhyeuk Jung ◽  
Christopher Dunham ◽  
Katie Perrotta ◽  
Yu Chen ◽  
James Gimzewski ◽  
...  
2017 ◽  
Vol 9 (23) ◽  
pp. 3464-3476 ◽  
Author(s):  
Joaudimir Castro Georgi ◽  
Yuliya L. Sommer ◽  
Cynthia D. Ward ◽  
Po-Yung Cheng ◽  
Robert L. Jones ◽  
...  

An ICP-MS method to measure total chromium and cobalt in whole blood is validated and described.


2020 ◽  
Vol 70 (12) ◽  
pp. 4594-4600

The purpose of this study was to characterize some types of biomass wastes resulted from different activities such as: agriculture, forestry and food industry using thermogravimetric and ICP-MS analyses. Also, it was optimized an ICP-MS method for the determination of As, Cd and Pb from biomass ash samples. The ICP-MS analysis revealed that the highest concentration of metals (As, Cd, Pb) was recorded in the wood waste ash sample, also the thermogravimetric analysis indicated that the highest amount of ash was obtained for the same sample (26.82%). The biomass wastes mentioned in this study are alternative recyclable materials, reusable as pellets and briquettes. Keywords: ash, biomass, ICP-MS, minor elements, TG


2019 ◽  
Vol 6 (1) ◽  
pp. 30-41
Author(s):  
Ranjith Arimboor ◽  
Karunkara Ramakrishna Menon ◽  
Natarajan Ramesh Babu ◽  
Haneesh Chandran

Background:Increased consumer demand for curry leaves free from pesticides demands fast and reliable analytical methods for the analysis of pesticide residues.Objective:The optimization of a QuEChERS based sample preparation technique with improved analytical accuracy by removing interfering matrix components for LC-MS/MS analysis of pesticide residues from curry leaves.Methods:A modified QuEChERS solid phase extraction method was developed and validated for the analysis of 26 pesticides in fresh and dried curry leaves. The effects of the sample preparation steps and column retention time on the matrix suppression of analyte ions were also evaluated.Results:Validation parameters were found within an acceptable range. The matrix effect evaluation studies showed that the QuEChERS sample preparation was able to minimize the ion suppression of analytes due to co-eluting matrix of components and that a d-SPE clean up step had major role in reducing matrix effect. The gradient mobile phase with longer retention time for analytes resulted in comparatively lesser matrix effects than the isocratic mobile phase of non-polar nature. Even after the clean up, a considerable number of compounds had more than 20% reduction in their MS response in the gradient mobile phase.Conclusion:This study emphasized the need of proper sample clean up before a LC-MS/MS analysis and the usage of matrix matched standards and mobile phase that ultimately results in an appropriate analyte separation in reasonable retention times.


Author(s):  
Blandine Gourcerol ◽  
◽  
Daniel J. Kontak ◽  
Phillips C. Thurston ◽  
Joseph A. Petrus
Keyword(s):  

2020 ◽  
Vol 1099 ◽  
pp. 16-25 ◽  
Author(s):  
Daniel Rosenkranz ◽  
Fabian L. Kriegel ◽  
Emmanouil Mavrakis ◽  
Spiros A. Pergantis ◽  
Philipp Reichardt ◽  
...  

Chemosensors ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 77
Author(s):  
Davide Spanu ◽  
Gilberto Binda ◽  
Marcello Marelli ◽  
Laura Rampazzi ◽  
Sandro Recchia ◽  
...  

A laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) based method is proposed for the quantitative determination of the spatial distribution of metal nanoparticles (NPs) supported on planar substrates. The surface is sampled using tailored ablation patterns and the data are used to define three-dimensional functions describing the spatial distribution of NPs. The volume integrals of such interpolated surfaces are calibrated to obtain the mass distribution of Ag NPs by correlation with the total mass of metal as determined by metal extraction and ICP–MS analysis. Once this mass calibration is carried out on a sacrificial sample, quantifications can be performed over multiple samples by a simple micro-destructive LA–ICP–MS analysis without requiring the extraction/dissolution of metal NPs. The proposed approach is here tested using a model sample consisting of a low-density polyethylene (LDPE) disk decorated with silver NPs, achieving high spatial resolution over cm2-sized samples and very high sensitivity. The developed method is accordingly a useful analytical tool for applications requiring both the total mass and the spatial distribution of metal NPs to be determined without damaging the sample surface (e.g., composite functional materials and NPs, decorated catalysts or electrodic materials).


2010 ◽  
Vol 398 (1) ◽  
pp. 415-424 ◽  
Author(s):  
T. Stehrer ◽  
J. Heitz ◽  
J. D. Pedarnig ◽  
N. Huber ◽  
B. Aeschlimann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document