scholarly journals Development of an N-Terminal BRD4 Bromodomain-Targeted Degrader

Author(s):  
Anand Divakaran ◽  
Huda Zahid ◽  
Wenwei Lin ◽  
Taosheng Chen ◽  
Dan Harki ◽  
...  

Targeted protein degradation is a powerful induced-proximity tool to control cellular concentrations of native proteins using small molecules. However, the design of selectivity in protein degradation remains challenging. In the case of Bromodomain and Extra-Terminal (BET) family proteins, BRD4 has emerged as the primary therapeutic target over other family members BRD2, 3 and T, but strategies to selectively degrade BRD4 rely on the use of pan-BET inhibitors optimized for BRD4:E3 protein-ubiquitin ligase (E3) ternary complex formation. Here, we report a potent and selective inhibitor for the first bromodomain of BRD4, iBRD4-BD1 (IC50 = 12 nM, 23-6200-fold intra-BET selectivity). We further use this novel inhibitor to develop dBRD4-BD1 that induces selective degradation of BRD4 at a DC50 of 280 nM. The design of BRD4 selectivity up-front enables the study of BRD4 biology in the absence of wider BET-inhibition, simplifies design of future BRD4-selective degraders as new E3 recruiting ligands are discovered, and provides a tool to design additional heterobifunctional BRD4-selective probes.

2011 ◽  
Vol 40 (3) ◽  
pp. 1065-1076 ◽  
Author(s):  
Yuji Masuda ◽  
Miki Suzuki ◽  
Hidehiko Kawai ◽  
Fumio Suzuki ◽  
Kenji Kamiya

2020 ◽  
Author(s):  
Michael L. Drummond ◽  
Andrew Henry ◽  
Huifang Li ◽  
Christopher I. Williams

ABSTRACTExtending upon our previous publication (Drummond and Williams, J. Chem. Inf. Model. 2019, 59, 1634), in this work two additional computational methods are presented to model PROTAC-mediated ternary complex structures, which are then used to predict the efficacy of any accompanying protein degradation. Method 4B, an extension to one of our previous approaches, incorporates a clustering procedure uniquely suited for considering ternary complexes. Method 4B yields the highest proportion to date of crystal-like poses in modeled ternary complex ensembles, nearing 100% in two cases and always giving a hit rate of at least 10%. Techniques to further improve this performance for particularly troublesome cases are suggested and validated. This demonstrated ability to reliably reproduce known crystallographic ternary complex structures is further established through modeling of a newly released crystal structure. Moreover, for the far more common scenario where the structure of the ternary complex intermediate is unknown, the methods detailed in this work nonetheless consistently yield results that reliably follow experimental protein degradation trends, as established through seven retrospective case studies. These various case studies cover challenging yet common modeling situations, such as when the precise orientation of the PROTAC binding moiety in one (or both) of the protein pockets has not been experimentally established. Successful results are presented for one PROTAC targeting many proteins, for different possible PROTACs targeting the same protein, and even for degradation effected by an E3 ligase that has not been structurally characterized in a ternary complex. Overall, the computational modeling approaches detailed in this work should greatly facilitate PROTAC screening and design efforts, so that the many advantages of a PROTAC-based degradation approach can be effectively utilized both rapidly and at reduced cost.


2020 ◽  
Vol 13 (4) ◽  
pp. 74
Author(s):  
Minoru Ishikawa ◽  
Shusuke Tomoshige ◽  
Yosuke Demizu ◽  
Mikihiko Naito

New therapeutic modalities are needed to address the problem of pathological but undruggable proteins. One possible approach is the induction of protein degradation by chimeric drugs composed of a ubiquitin ligase (E3) ligand coupled to a ligand for the target protein. This article reviews chimeric drugs that decrease the level of specific proteins such as proteolysis targeting chimeric molecules (PROTACs) and specific and nongenetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs), which target proteins for proteasome-mediated degradation. We cover strategies for increasing the degradation activity induced by small molecules, and their scope for application to undruggable proteins.


2005 ◽  
Vol 41 ◽  
pp. 1-14 ◽  
Author(s):  
Kuhlbrodt Kirsten ◽  
Mouysset Julien ◽  
Hoppe Thorsten

Selective protein degradation by the 26 S proteasome usually requires a polyubiquitin chain attached to the protein substrate by three classes of enzymes: a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and a ubiquitin ligase (E3). This reaction can produce different polyubiquitin chains that, depending on size and linkage type, can provide distinct intracellular signals. Interestingly, polyubiquitination is sometimes regulated by additional conjugation factors, called E4s (polyubiquitin chain conjugation factors). Yeast UFD2 (ubiquitin fusion degradation protein-2), the first E4 to be described, binds to the ubiquitin moieties of preformed conjugates and catalyses ubiquitin-chain elongation together with E1, E2, and E3. Recent studies have illustrated that the E4 enzyme UFD2 co-operates with an orchestra of ubiquitin-binding factors in an escort pathway to transfer and deliver polyubiquitinated substrates to the 26 S proteasome. Here we propose a model in which E4-dependent polyubiquitination pathways are modulated by different ubiquitin-binding proteins, using ataxin-3 as an example.


Author(s):  
Parth Sarthi Sen Gupta ◽  
Satyaranjan Biswal ◽  
Saroj Kumar Panda ◽  
Abhik Kumar Ray ◽  
Malay Kumar Rana

<p>While an FDA approved drug Ivermectin was reported to dramatically reduce the cell line of SARS-CoV-2 by ~5000 folds within 48 hours, the precise mechanism of action and the COVID-19 molecular target involved in interaction with this in-vitro effective drug are unknown yet. Among 12 different COVID-19 targets studied here, the RNA dependent RNA polymerase (RdRp) with RNA and Helicase NCB site show the strongest affinity to Ivermectin amounting -10.4 kcal/mol and -9.6 kcal/mol, respectively. Molecular dynamics of corresponding protein-drug complexes reveals that the drug bound state of RdRp with RNA has better structural stability than the Helicase NCB site, with MM/PBSA free energy of -135.2 kJ/mol, almost twice that of Helicase (-76.6 kJ/mol). The selectivity of Ivermectin to RdRp is triggered by a cooperative interaction of RNA-RdRp by ternary complex formation. Identification of the target and its interaction profile with Ivermectin can lead to more powerful drug designs for COVID-19 and experimental exploration. </p>


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1015
Author(s):  
Utsa Bhaduri ◽  
Giuseppe Merla

Ubiquitination is a post-translational modification that has pivotal roles in protein degradation and diversified cellular processes, and for more than two decades it has been a subject of interest in the biotech or biopharmaceutical industry. Tripartite motif (TRIM) family proteins are known to have proven E3 ubiquitin ligase activities and are involved in a multitude of cellular and physiological events and pathophysiological conditions ranging from cancers to rare genetic disorders. Although in recent years many kinds of E3 ubiquitin ligases have emerged as the preferred choices of big pharma and biotech startups in the context of protein degradation and disease biology, from a surface overview it appears that TRIM E3 ubiquitin ligases are not very well recognized yet in the realm of drug discovery. This article will review some of the blockbuster scientific discoveries and technological innovations from the world of ubiquitination and E3 ubiquitin ligases that have impacted the biopharma community, from biotech colossuses to startups, and will attempt to evaluate the future of TRIM family proteins in the province of E3 ubiquitin ligase-based drug discovery.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kirsten P. Stone ◽  
Sujoy Ghosh ◽  
Jean Paul Kovalik ◽  
Manda Orgeron ◽  
Desiree Wanders ◽  
...  

AbstractThe initial sensing of dietary methionine restriction (MR) occurs in the liver where it activates an integrated stress response (ISR) that quickly reduces methionine utilization. The ISR program is regulated in part by ATF4, but ATF4’s prototypical upstream regulator, eIF2α, is not acutely activated by MR. Bioinformatic analysis of RNAseq and metabolomics data from liver samples harvested 3 h and 6 h after initiating MR shows that general translation is inhibited at the level of ternary complex formation by an acute 50% reduction of hepatic methionine that limits formation of initiator methionine tRNA. The resulting ISR is induced by selective expression of ATF4 target genes that mediate adaptation to reduced methionine intake and return hepatic methionine to control levels within 4 days of starting the diet. Complementary in vitro experiments in HepG2 cells after knockdown of ATF4, or inhibition of mTOR or Erk1/2 support the conclusion that the early induction of genes by MR is partially dependent on ATF4 and regulated by both mTOR and Erk1/2. Taken together, these data show that initiation of dietary MR induces an mTOR- and Erk1/2-dependent stress response that is linked to ATF4 by the sharp, initial drop in hepatic methionine and resulting repression of translation pre-initiation.


Sign in / Sign up

Export Citation Format

Share Document