scholarly journals Studi Kinetika Adsorpsi Metil Biru Menggunakan Karbon Aktif Limbah Kulit Pisang

2019 ◽  
Vol 3 (1) ◽  
pp. 34
Author(s):  
Yuni Kurniati ◽  
Okky Putri Prastuti ◽  
Eka Lutfi Septiani

Indonesia adalah negara berkembang dengan ribuan perusahaan di sektor industri yang menghasilkan limbah. Pisang adalah produk umum yang paling dikenal di masyarakat. Bagian pisang seperti kulitnya belum digunakan secara optimal namun dapat dikembangkan menjadi karbon aktif. Penelitian ini bertujuan memanfaatkan limbah kulit pisang sebagai adsorben untuk menghilangkan limbah pewarna metil biru pada industri tekstil. Pada umumnya limbah industri tekstil saat ini banyak mengandung pewarna. Adsorben yang digunakan untuk mengurangi kadar pewarna dalam limbah perlu dikembangkan. Kapasitas adsorpsi limbah kulit pisang dalam penelitian diamati, termasuk jumlah adsorben yang harus ditentukan dan konsentrasi limbah untuk menghilangkan pewarna tekstil. Sebelum digunakan sebagai adsorben, karbon aktif  limbah kulit pisang harus diaktivasi menggunakan 0,1 N dan 0,5 N larutan NaOH. Larutan metil biru dibuat dalam berbagai konsentrasi untuk menentukan kurva kalibrasi standar menggunakan spektrofotometer UV-Vis. Karakterisasi yang dilakukan dalam penelitian ini adalah Scanning Electron Microscopy (SEM) untuk mengetahui morfologi partikel karbon aktif. Hasilnya menunjukkan bahwa karbon aktif limbah kulit pisang akan menjadi alternatif untuk menghilangkan metil biru dengan proses adsorpsi dengan memiliki daya adsorbsi rata-rata sebesar 14,12 %.  Kinetika adsorpsi dari penelitian ini menggunakan model pseudo orde satu yaitu persamaan Lagergren dan pseudo-orde ke dua yang dikembangkan oleh Ho dan McKay yang menghasilkan konstanta adsorpsi k1 dari pseudo-ordesatu dalam larutan limbah tekstil dengan perbandingan konsentrasi antara limbah tekstil dengan aquades sebesar 3 : 7  (v/v) dengan aktivasi larutan 0,1 dan 0,5 N larutan NaOH adalah 0,0066 dan 0,0033 min-1 sedangkan untuk model hasil pseudo-orde ke dua k2 dengan aktivasi larutan 0,1 dan 0,5 N larutan NaOH adalah 1,8172 dan 1,2539 min-1.Indonesia is a developing country that has thousands of companies in the industrial sector that generally produce waste. Banana is the general product that mostly known in society. The other part of banana only as a waste product, such as banana peel that have not used optimally yet meanwhile it can be developed to be activated carbon. This research aims to use banana peels as an adsorbent for removing methylene blue.  In general, textile industry waste currently contains many dyes. Adsorbents used to reduce dye levels in waste need to be developed. The adsorption capacity of banana peel adsorption is observed, including the dose of adsorbent that must be applied and the concentration of waste for removal of textile dyes. Before being used as an adosorbent, the activated carbon of banana peel must be activated by using 0.1 N and 0.5 NaOH solution. Methyl blue solutions were made in various concentrations to determine standard calibration curves using a UV-Vis spectrophotometer. The characterization was used to support this study such as Scanning Electron Microscopy (SEM) analysis to find out the morphology of activated carbon particles. The result indicate that the banana peel activated carbon would be an alternative for the removal of methylene blue by adsorption process with  adsorption capacity as 14.12%. The adsorption kinetics of this study used model of pseudo-first order by Lagergren equation and pseudo-second order developed by Ho and Mc. Kay that result adsorption constant k1 of pseudo-first order in 3:7  (v/v) textile waste and aquadest by activation in 0.1 and 0.5 NaOH solution were 0.0066 dan 0,0033 min-1, while the model of pseudo-second order results k2 by activation in 0.1 and 0.5 NaOH solution were 1.8172 dan 1.2539 min-1.

2012 ◽  
Vol 14 (4) ◽  
pp. 88-94 ◽  
Author(s):  
R.P. Suresh Jeyakumar ◽  
V. Chandrasekaran

Abstract In this work, the efficiency of Ulva fasciata sp. activated carbons (CCUC, SCUC and SSUC) and commercially activated carbon (CAC) were studied for the removal of Cu (II) ions from synthetic wastewater. Batch adsorption experiments were carried out as a function of pH, contact time, initial copper concentration and adsorbent dose. The percentage adsorption of copper by CCUC, SSUC, SCUC and CAC are 88.47%, 97.53%, 95.78% and 77.42% respectively. Adsorption data were fitted with the Langmuir, Freundlich and Temkin models. Two kinetic models pseudo first order and the pseudo second order were selected to interpret the adsorption data.


1993 ◽  
Vol 71 (4) ◽  
pp. 523-532 ◽  
Author(s):  
Joanna Fraser ◽  
Eric G. Kokko

The initial stages of panicle, spikelet, and floret development in field-grown 'Kay' orchardgrass were examined using scanning electron microscopy. Spikelets arose from a complex multilevelled sequence of initiation from branch apices. Spikelets developed indirectly in a two-tiered progression: (i) an acropetal and basipetal sequence of first order, second-order, and third-order inflorescence apices, and (ii) an acropetal development within subclusters of higher-order lateral branch inflorescence apices. The panicle had the unique feature of dorsiventrality as well as bilateral symmetry. The basal apex from first-order, second-order, or third-order apices developed on the same side of the main axis as the first-order apex. The two glumes subtending each spikelet primordium developed alternately and acropetally. Development and initiation of florets within spikelets was basipetal within the panicle, basipetal within clusters and subclusters of spikelets on lateral branches, and acropetal within spikelets. Within florets, paleas developed later than lemmas. Key words: Dactylis glomerata, cocksfoot, scanning electron microscopy, development, panicle.


1980 ◽  
Vol 58 (5) ◽  
pp. 842-851 ◽  
Author(s):  
P. J. Albert

The structure and innervation as determined by methylene blue techniques of the sensilla of the maxillary palp, galea, mandible, labrum, and labial palp of the spruce budworm larva are described, based on light and scanning electron microscopy. An attempt is made to identify the function of various sensilla by comparing them with those of other insects. The function of the gustatory sensilla on the galea and epipharynx is confirmed electrophysiologically.


2020 ◽  
Vol 3 (6) ◽  
pp. 857-870
Author(s):  
Shagufta Zafar ◽  
Muhammad Imran Khan ◽  
Mushtaq Hussain Lashari ◽  
Majeda Khraisheh ◽  
Fares Almomani ◽  
...  

AbstractThe present study investigates the removal of copper ions (Cu (II)) from aqueous solution using chemically treated rice husk (TRH). The chemical treatment was carried out using NaOH solution and the effect of contact time (tc), adsorbent dosage (Dad), initial Cu (II) concentration ([Cu]i), and temperature (T) on the percentage removals of Cu (II) (%RCu) were investigated. Different analytical techniques (FTIR, SEM, and EDX) were used to confirm the adsorption (ads) of Cu (II) onto the TRH. The ads kinetics was tested against pseudo-first-order (PFO) and pseudo-second-order (PSO) models as well as Langmuir and Freundlich isotherms. Treating RH with NaOH altered the surface and functional groups, and on the surface of RH, the ionic ligands with high electro-attraction to Cu increased and thus improved the removal efficiency. The %RCu decreased by increasing the [Cu]i and increased by increasing the ct, Dad, and T. Up to 97% Cu removal was achieved in ct of 30 min using Dad of 0.3 g [Cu]i of 25 mg L−1 and T = 280 K. The ads of Cu on TRH is endothermic, spontaneous, follows Langmuir isotherms, and exhibited a PSO kinetics. Moreover, the TRH was successfully regenerated and used for further adsorption cycles using 1 M HNO3.


2008 ◽  
Vol 66 (2) ◽  
pp. 260-265 ◽  
Author(s):  
Jamil R. Memon ◽  
Saima Q. Memon ◽  
M.I. Bhanger ◽  
G. Zuhra Memon ◽  
A. El-Turki ◽  
...  

Clay Minerals ◽  
2011 ◽  
Vol 46 (3) ◽  
pp. 461-471 ◽  
Author(s):  
Z. Klika ◽  
P. Pustková ◽  
M. Dudová ◽  
P. Čapková ◽  
Ch. Kliková ◽  
...  

AbstractThe adsorption of methylene blue (MB) on montmorillonite from acid solutions has not yet been studied in detail. In this paper the adsorption of this dye on Ca/SAz montmorillonite from 0.32, 0.80 and 1.60 M HCl solutions at ambient temperature and after 2 hours leaching was carefully studied and evaluated. Under the above conditions the MB/SAz intercalates formed are practically insoluble. In contrast to the adsorption of methylene blue on montmorillonite from aqueous solutions, the adsorption from acid solutions consists of two adsorption waves. The intercalated samples from the first and second waves were studied using X-ray powder diffraction (XRD), FTIR, Vis spectroscopy, and scanning electron microscopy (SEM) equipped with a microprobe system. The adsorption of MB in the first wave is attributed to ion exchange of the dye cationic species (MB+, MB22+, H-aggregates, MBH2+ and H+) for the original interlayer cations of montmorillonite. The percentages of MBH2+ and H+ based on total adsorbed MB were estimated for varying HCl concentrations. The second adsorption wave is linked to the precipitation of MB species on the outer MB/SAz surface.


2020 ◽  
Vol 14 (4) ◽  
pp. 553-562
Author(s):  
Abhijit Jadhav ◽  
◽  
Govindaraj Mohanraj ◽  
Suseeladevi Mayadevi ◽  
Ashok Gokarn ◽  
...  

In this paper activated carbon is prepared from coconut leaves by chemical activation during slow pyrolysis at 673 K in an inert atmosphere. Activated carbon is prepared in the stiochiometric ratio of 1:1 (CL1), 2:1 (CL2) and 3:1 (CL3). Optimized 3:1 ratio is preferable for further study. BET surface area of CL3 activated carbon was found 1060.57 m2/g. It is greater than those of CL1 and CL2. The batch sorption study experiments were conducted with respect to solute concentration of 2.5–122.8 mg/l and solution temperature of 313–343 K. The Langmuir, Freundlich and Temkin isotherm studies were conducted. The experimental data fitted very well for the pseudo-first order and pseudo-second-order. The results have established good potentiality for the CL3 activated carbon to be used as a sorbent for the removal of lead from wastewater.


Sign in / Sign up

Export Citation Format

Share Document