scholarly journals The interactive effect of dietary n-6: n-3 fatty acid ratio and vitamin E level on tissue lipid peroxidation, DNA damage in intestinal epithelial cells, and gut morphology in chickens of different ages

2018 ◽  
Vol 97 (1) ◽  
pp. 149-158 ◽  
Author(s):  
P. Konieczka ◽  
M. Barszcz ◽  
M. Choct ◽  
S. Smulikowska
Author(s):  
Berta Buey ◽  
Andrea Bellés ◽  
Eva Latorre ◽  
Inés Abad ◽  
María Dolores Pérez ◽  
...  

Milk contains active molecules with important functional properties as the defensive proteins; among them are the whey protein lactoferrin and proteins of the milk fat globule membrane (MFGM) present in buttermilk. The aim of this study has been to investigate the effect of lactoferrin, whey and buttermilk as modulators of intestinal innate immunity and oxidative stress on intestinal epithelial cells, to evaluate its potential use for the development of functional foods. Innate immune Toll-like receptors (TLR2, TLR4, and TLR9) mRNA expression, lipid peroxidation (MDA+4-HDA) and protein carbonyl levels were analyzed in enterocyte-like Caco-2/TC7 cells treated for 24 hours with different concentrations of lactoferrin, whey or buttermilk. None of the substances analyzed caused oxidative damage; however, whey significantly decreased the levels of lipid peroxidation. Furthermore, both lactoferrin and whey were able to reduce the oxidative stress induced by lipopolysaccharide. Respect to TLR receptors, lactoferrin, whey and buttermilk specifically altered the expression of TLR2, TLR4 and TLR9 receptors, with a strong decrease in TLR4 expression. These results suggest that lactoferrin, whey and buttermilk could be interesting potential ingredients for functional foods as they seem to modulate oxidative stress and inflammatory response induced by TLRs activation.


1992 ◽  
Vol 20 (6) ◽  
pp. 789-796 ◽  
Author(s):  
CHERYL LALONDE ◽  
JAMES KNOX ◽  
YEO-KYU YOUN ◽  
ROBERT DEMLING

2003 ◽  
Vol 89 (1) ◽  
pp. 19-28 ◽  
Author(s):  
Morio Saito ◽  
Kazuhiro Kubo

In a previous study, we found that the extent of dietary n-3 docosahexaenoic acid (DHA)-stimulated tissue lipid peroxidation was less than expected from the relative peroxidizability index of the total tissue lipids in rats with adequate vitamin E nutritional status. This suppression of lipid peroxidation was especially prominent in the liver. To elucidate whether this phenomenon was unique to DHA, we compared the peroxidation effects of n-3 α-linolenic acid (α-LN) and n-3 eicosapentaeonic acid (EPA) with those of DHA in rats. Either α-LN (8·6 % of total energy), EPA (8·2 %), or DHA (8·0 %) and one of two levels of dietary vitamin E (7·5 and 54 mg/kg diet) were fed to rats for 22 d. Levels of conjugated diene, chemiluminescence emission and thiobarbituric acid (TBA)-reactive substance in the liver, kidney, and testis were determined as indicators of lipid peroxidation. In rats fed the DHA diet deficient in vitamin E (7·5 m/g diet), TBA values in the liver, kidney, and testis correlated well with the tissues' relative peroxidizability indices. In rats fed the α-LN diet with an adequate level of vitamin E (54 m/g diet), a close association between relative peroxidizability indices and lipid peroxide levels was observed in all the tissues analysed. However, in rats fed either the EPA diet or the DHA diet with an adequate level of vitamin E, the extent of lipid peroxidation in each tissue was less than expected from the relative peroxidizability index. This suppression was particularly marked in the liver. We concluded that suppression of lipid peroxidation below the relative peroxidizability index was not unique to DHA, but was also seen with EPA, which has five double bonds, in rats with adequate vitamin E nutritional status, but not with α-LN, which has three double bonds.


PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e63456 ◽  
Author(s):  
Sabrina Yara ◽  
Jean-Claude Lavoie ◽  
Jean-François Beaulieu ◽  
Edgard Delvin ◽  
Devendra Amre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document