scholarly journals Genetic Algorithm Based Solution of Fuzzy Multi-Objective Transportation Problem

Author(s):  
Jaydeepkumar M. Sosa ◽  
Jayesh M. Dhodiya

Optimizing problems in the modern era, the single objective optimization problems are insufficient to hold the full data of the problem. Therefore, multi-objective optimization problems come to the rescue. Similarly, in daily life problems, the parameters used in the optimization problem are not always fixed but there may be some uncertainty and it can characterize by fuzzy number. This work underlines the genetic algorithm (GA) based solution of fuzzy transportation problem with more than one objective. With a view to providing the multifaceted choices to decision-maker (DM), the exponential membership function is used with the decision-makers desired number of cases which consisted of shape parameter and aspiration level. Here, we consider the objective functions which are non-commensurable and conflict with each other. To interpret, evaluate and exhibit the usefulness of the proposed method, a numerical example is given.

2021 ◽  
Vol 26 (2) ◽  
pp. 27
Author(s):  
Alejandro Castellanos-Alvarez ◽  
Laura Cruz-Reyes ◽  
Eduardo Fernandez ◽  
Nelson Rangel-Valdez ◽  
Claudia Gómez-Santillán ◽  
...  

Most real-world problems require the optimization of multiple objective functions simultaneously, which can conflict with each other. The environment of these problems usually involves imprecise information derived from inaccurate measurements or the variability in decision-makers’ (DMs’) judgments and beliefs, which can lead to unsatisfactory solutions. The imperfect knowledge can be present either in objective functions, restrictions, or decision-maker’s preferences. These optimization problems have been solved using various techniques such as multi-objective evolutionary algorithms (MOEAs). This paper proposes a new MOEA called NSGA-III-P (non-nominated sorting genetic algorithm III with preferences). The main characteristic of NSGA-III-P is an ordinal multi-criteria classification method for preference integration to guide the algorithm to the region of interest given by the decision-maker’s preferences. Besides, the use of interval analysis allows the expression of preferences with imprecision. The experiments contrasted several versions of the proposed method with the original NSGA-III to analyze different selective pressure induced by the DM’s preferences. In these experiments, the algorithms solved three-objectives instances of the DTLZ problem. The obtained results showed a better approximation to the region of interest for a DM when its preferences are considered.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 136
Author(s):  
Wenxiao Li ◽  
Yushui Geng ◽  
Jing Zhao ◽  
Kang Zhang ◽  
Jianxin Liu

This paper explores the combination of a classic mathematical function named “hyperbolic tangent” with a metaheuristic algorithm, and proposes a novel hybrid genetic algorithm called NSGA-II-BnF for multi-objective decision making. Recently, many metaheuristic evolutionary algorithms have been proposed for tackling multi-objective optimization problems (MOPs). These algorithms demonstrate excellent capabilities and offer available solutions to decision makers. However, their convergence performance may be challenged by some MOPs with elaborate Pareto fronts such as CFs, WFGs, and UFs, primarily due to the neglect of diversity. We solve this problem by proposing an algorithm with elite exploitation strategy, which contains two parts: first, we design a biased elite allocation strategy, which allocates computation resources appropriately to elites of the population by crowding distance-based roulette. Second, we propose a self-guided fast individual exploitation approach, which guides elites to generate neighbors by a symmetry exploitation operator, which is based on mathematical hyperbolic tangent function. Furthermore, we designed a mechanism to emphasize the algorithm’s applicability, which allows decision makers to adjust the exploitation intensity with their preferences. We compare our proposed NSGA-II-BnF with four other improved versions of NSGA-II (NSGA-IIconflict, rNSGA-II, RPDNSGA-II, and NSGA-II-SDR) and four competitive and widely-used algorithms (MOEA/D-DE, dMOPSO, SPEA-II, and SMPSO) on 36 test problems (DTLZ1–DTLZ7, WGF1–WFG9, UF1–UF10, and CF1–CF10), and measured using two widely used indicators—inverted generational distance (IGD) and hypervolume (HV). Experiment results demonstrate that NSGA-II-BnF exhibits superior performance to most of the algorithms on all test problems.


2014 ◽  
Vol 984-985 ◽  
pp. 419-424
Author(s):  
P. Sabarinath ◽  
M.R. Thansekhar ◽  
R. Saravanan

Arriving optimal solutions is one of the important tasks in engineering design. Many real-world design optimization problems involve multiple conflicting objectives. The design variables are of continuous or discrete in nature. In general, for solving Multi Objective Optimization methods weight method is preferred. In this method, all the objective functions are converted into a single objective function by assigning suitable weights to each objective functions. The main drawback lies in the selection of proper weights. Recently, evolutionary algorithms are used to find the nondominated optimal solutions called as Pareto optimal front in a single run. In recent years, Non-dominated Sorting Genetic Algorithm II (NSGA-II) finds increasing applications in solving multi objective problems comprising of conflicting objectives because of low computational requirements, elitism and parameter-less sharing approach. In this work, we propose a methodology which integrates NSGA-II and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for solving a two bar truss problem. NSGA-II searches for the Pareto set where two bar truss is evaluated in terms of minimizing the weight of the truss and minimizing the total displacement of the joint under the given load. Subsequently, TOPSIS selects the best compromise solution.


Author(s):  
Andrew J. Robison ◽  
Andrea Vacca

A gerotor gear generation algorithm has been developed that evaluates key performance objective functions to be minimized or maximized, and then an optimization algorithm is applied to determine the best design. Because of their popularity, circular-toothed gerotors are the focus of this study, and future work can extend this procedure to other gear forms. Parametric equations defining the circular-toothed gear set have been derived and implemented. Two objective functions were used in this kinematic optimization: maximize the ratio of displacement to pump radius, which is a measure of compactness, and minimize the kinematic flow ripple, which can have a negative effect on system dynamics and could be a major source of noise. Designs were constrained to ensure drivability, so the need for additional synchronization gearing is eliminated. The NSGA-II genetic algorithm was then applied to the gear generation algorithm in modeFRONTIER, a commercial software that integrates multi-objective optimization with third-party engineering software. A clear Pareto front was identified, and a multi-criteria decision-making genetic algorithm was used to select three optimal designs with varying priorities of compactness vs low flow variation. In addition, three pumps used in industry were scaled and evaluated with the gear generation algorithm for comparison. The scaled industry pumps were all close to the Pareto curve, but the optimized designs offer a slight kinematic advantage, which demonstrates the usefulness of the proposed gerotor design method.


Author(s):  
Mariana Gomes da Motta Macedo ◽  
Carmelo J. A. Bastos-Filho ◽  
Susana M. Vieira ◽  
João M. C. Sousa

Fish school search (FSS) algorithm has inspired several adaptations for multi-objective problems or binary optimization. However, there is no particular proposition to solve both problems simultaneously. The proposed multi-objective approach binary fish school search (MOBFSS) aims to solve optimization problems with two or three conflicting objective functions with binary decision input variables. MOBFSS is based on the dominance concept used in the multi-objective fish school search (MOFSS) and the threshold technique deployed in the binary fish school search (BFSS). Additionally, the authors evaluate the proposal for feature selection for classification in well-known datasets. Moreover, the authors compare the performance of the proposal with a state-of-art algorithm called BMOPSO-CDR. MOBFSS presents better results than BMOPSO-CDR, especially for datasets with higher complexity.


A test blueprint/test template, also known as the table of specifications, represents the structure of a test. It has been highly recommended in assessment textbook to carry out the preparation of a test with a test blueprint. This chapter focuses on modeling a dynamic test paper template using multi-objective optimization algorithm and makes use of the template in dynamic generation of examination test paper. Multi-objective optimization-based models are realistic models for many complex optimization problems. Modeling a dynamic test paper template, similar to many real-life problems, includes solving multiple conflicting objectives satisfying the template specifications.


2015 ◽  
Vol 651-653 ◽  
pp. 1387-1393 ◽  
Author(s):  
Lorenzo Iorio ◽  
Lionel Fourment ◽  
Stephane Marie ◽  
Matteo Strano

The Game Theory is a good method for finding a compromise between two players in a bargaining problem. The Kalai and Smorodinsky (K-S) method is a solution the bargaining problem where players make decisions in order to maximize their own utility, with a cooperative approach. Interesting applications of the K-S method can be found in engineering multi-objective optimization problems, where two or more functions must be minimized. The aim of this paper is to develop an optimization algorithm aimed at rapidly finding the Kalai and Smorodinsky solution, where the objective functions are considered as players in a bargaining problem, avoiding the search for the Pareto front. The approach uses geometrical consideration in the space of the objective functions, starting from the knowledge of the so-called Utopia and Nadir points. An analytical solution is proposed and initially tested with a simple minimization problem based on a known mathematical function. Then, the algorithm is tested (thanks to a user friendly routine built-in the finite element code Forge®) for FEM optimization problem of a wire drawing operation, with the objective of minimizing the pulling force and the material damage. The results of the simulations are compared to previous works done with others methodologies.


Sign in / Sign up

Export Citation Format

Share Document