scholarly journals Numerical Simulations of Heat Transfer Phenomena through a Baffled Rectangular Channel

Author(s):  
Sandip Saha ◽  
Pankaj Biswas ◽  
Apurba Narayan Das

In presence of baffle, the turbulent airflow phenomena as well as forced convective heat exchange characteristics in two-dimensional rectangular channel have been analyzed in this work. For variations in Reynolds number (Re), we have studied the variations in characteristics of thermal behavior due to the change in the shape of baffle. Computations have been done using finite volume method (FVM) and FLUENT software and the SIMPLE algorithm has been employed for solving the governing equations. Finally, the flow and thermal exchange characteristics viz., streamline flow, turbulence intensity (TE), axial velocity, turbulence kinetic energy (TKE), normalized friction factor (F), normalized average Nusselt number (Nuavg) and thermal enhancement factor (TEF) have been studied in details from numerical standpoint. It has been found that the triangular shaped baffle provides highest value of F at Re = 30,000 and at Re = 46, 000, the maximum value of the TEF is found for the same baffle implying that triangular shaped baffle is more suitable for overall purposes.

2021 ◽  
Vol 13 (2) ◽  
pp. 51-57
Author(s):  
Sandip Saha

The aim of this study is to investigate the heat transfer characteristics of turbulent airflow phenomena in a rectangular micro-channel in presence of two plane shaped (type-1) and diamond shaped (type-2) baffles which will help to develop various heat exchanger models. Finite volume method has been used to solve the governing equations and the FLUENT software has been employed to visualize the simulation results. For both the baffles, the profile of flow structure, normalized velocity profile, normalized friction factor and average Nusselt number have been investigated with the variations of Reynolds number ranges between [10,000-50,000]. In terms of fluid flow and heat transfer phenomena, it has been found that in the presence of diamond shaped baffles (type-2) are more convenient than plane shaped baffles.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Amnart Boonloi ◽  
Withada Jedsadaratanachai

Effects of flow attack angles of the V-wavy plate on flow and heat transfer in a square channel heat exchanger are investigated numerically. The V-wavy plates with V-tips pointing downstream and upstream called V-Downstream and V-Upstream, respectively, are examined for the Reynolds number in the range of 3000–10,000. The finite volume method with SIMPLE algorithm is selected to solve the present problem. The numerical results are presented in terms of flow and heat transfer visualization. The thermal performance analysis is also concluded in the form of Nusselt number ratio (Nu/Nu0), friction factor ratio (f/f0), and thermal enhancement factor (TEF). The numerical result shows that the wavy plate can induce the swirling flow through the test section for all cases. The swirling flow disturbs the thermal boundary layer on the channel wall which is the reason for heat transfer enhancement. In range studies, the heat transfer rate increases around 3–6.5 and 2.8–6 times above the smooth channel for V-Downstream and V-Upstream, respectively. The optimum TEF is found at α = 20° and Re = 3000 to be around 2.09 for V-Upstream case.


Author(s):  
Xiaoxu Du ◽  
Huan Wang

The successful operation of an Autonomous Underwater Vehicle (AUV) requires the capability to return to a dock. A number of underwater docking technologies have been proposed and tested in the past. The docking allows the AUV to recharge its batteries, download data and upload new instructions, which is helpful to improve the working time and efficiency. During the underwater docking process, unsteady hydrodynamic interference occurs between the docking device and an AUV. To ensure a successful docking, it is very important that the underwater docking hydrodynamics of AUV is understood. In this paper, numerical simulations based on the computational fluid dynamics (CFD) solutions were carried out for a 1.85m long AUV with maximum 0.2 m in diameter during the docking process. The two-dimensional AUV model without fin and rudder was used in the simulation. The mathematical model based on the Reynolds-averaged Navier-Stokes (RANS) equations was established. The finite volume method (FVM) and the dynamic structured mesh technique were used. SIMPLE algorithm and the k-ε turbulence model in the Descartes coordinates were also adopted. The hydrodynamics characteristics of different docking states were analyzed, such as the different docking velocity, the docking device including baffle or not. The drag coefficients of AUV in the process of docking were computed for various docking conditions, i.e., the AUV moving into the docking in the speed of 1m/s, 2m/s, 5m/s. The results indicate that the drag coefficient increases slowly in the process of AUV getting close to the docking device. When the AUV moves into the docking device, the drag coefficient increases rapidly. Then the drag coefficient decreases rapidly. The drag coefficient decreases with the increase of velocity when AUV enters the docking device. It was also found that the drag coefficient can be effectively reduced by dislodging the baffle of docking device.


Author(s):  
Lin Sun ◽  
Sanjay R. Mathur ◽  
Jayathi Y. Murthy

A numerical method is developed for solving the 3D, unsteady, incompressible flows with immersed moving solids of arbitrary geometrical complexity. A co-located (non-staggered) finite volume method is employed to solve the Navier-Stokes governing equations for flow region using arbitrary convex polyhedral meshes. The solid region is represented by a set of material points with known position and velocity. Faces in the flow region located in the immediate vicinity of the solid body are marked as immersed boundary (IB) faces. At every instant in time, the influence of the body on the flow is accounted for by reconstructing implicitly the velocity the IB faces from a stencil of fluid cells and solid material points. Specific numerical issues related to the non-staggered formulation are addressed, including the specification of face mass fluxes, and corrections to the continuity equation to ensure overall mass balance. Incorporation of this immersed boundary technique within the framework of the SIMPLE algorithm is described. Canonical test cases of laminar flow around stationary and moving spheres and cylinders are used to verify the implementation. Mesh convergence tests are carried out. The simulation results are shown to agree well with experiments for the case of micro-cantilevers vibrating in a viscous fluid.


In this work, bifurcation characteristics of unsteady, viscous, Newtonian laminar flow in two-dimensional sudden expansion and sudden contraction-expansion channels have been studied for different values of expansion ratio. The governing equations have been solved using finite volume method and FLUENT software has been employed to visualize the simulation results. Three different mesh studies have been performed to calculate critical Reynolds number (Recr) for different types of bifurcation phenomena. It is found that Recr decreases with the increase in expansion ratio (ER).


2019 ◽  
Vol 29 (10) ◽  
pp. 3908-3937 ◽  
Author(s):  
Younes Menni ◽  
Ahmed Azzi ◽  
Ali J. Chamkha ◽  
Souad Harmand

Purpose The purpose of this paper is to carry out a numerical study on the dynamic and thermal behavior of a fluid with a constant property and flowing turbulently through a two-dimensional horizontal rectangular channel. The upper surface was put in a constant temperature condition, while the lower one was thermally insulated. Two transverse, solid-type obstacles, having different shapes, i.e. flat rectangular and V-shaped, were inserted into the channel and fixed to the top and bottom walls of the channel, in a periodically staggered manner to force vortices to improve the mixing, and consequently the heat transfer. The flat rectangular obstacle was put in the first position and was placed on the hot top wall of the channel. However, the second V-shaped obstacle was placed on the insulated bottom wall, at an attack angle of 45°; its position was varied to find the optimum configuration for optimal heat transfer. Design/methodology/approach The fluid is considered Newtonian, incompressible with constant properties. The Reynolds averaged Navier–Stokes equations, along with the standard k-epsilon turbulence model and the energy equation, are used to control the channel flow model. The finite volume method is used to integrate all the equations in two-dimensions; the commercial CFD software FLUENT along with the SIMPLE-algorithm is used for pressure-velocity coupling. Various values of the Reynolds number and obstacle spacing were selected to perform the numerical runs, using air as the working medium. Findings The channel containing the flat fin and the 45° V-shaped baffle with a large Reynolds number gave higher heat transfer and friction loss than the one with a smaller Reynolds number. Also, short separation distances between obstacles provided higher values of the ratios Nu/Nu0 and f/f0 and a larger thermal enhancement factor (TEF) than do larger distances. Originality/value This is an original work, as it uses a novel method for the improvement of heat transfer in completely new flow geometry.


Author(s):  
D. A. Romanyuk ◽  
S. V. Panfilov ◽  
D. S. Gromov

Within the scope of the research work, we have developed the methods and software package for solving the conjugate heat and hydraulic problems based on the classical approach to performing hydraulic calculations and modeling thermal processes by means of the finite volume method in the ANSYS Fluent software package. The developed means allowed us to efficiently calculate the thermal state of complex technical objects. The study gives mathematical formulation of the methods and suggests the results of their approbation and verification


2021 ◽  
Vol 9 ◽  
Author(s):  
Yacine Khetib ◽  
Ammar Melaibari ◽  
Radi Alsulami

The present research benefits from the finite volume method in investigating the influence of combined turbulators on the thermal and hydraulic exergy of a parabolic solar collector with two-phase hybrid MWCNT-Cu/water nanofluid. All parabolic geometries are produced using DesignModeler software. Furthermore, FLUENT software, equipped with a SIMPLER algorithm, is applied for analyzing the performance of thermal and hydraulic, and exergy efficiency. The Eulerian–Eulerian multiphase model and k-ε were opted for simulating the two-phase hybrid MWCNT-Cu/water nanofluid and turbulence model in the collector. The research was analyzed in torsion ratios from 1 to 4, Re numbers from 6,000 to 18,000 (turbulent flow), and the nanofluid volume fraction of 3%. The numerical outcomes confirm that the heat transfer and lowest pressure drop are relevant to the Re number of 18,000, nanofluid volume fraction of 3%, and torsion ratio of 4. Furthermore, in all torsion ratios, rising Re numbers and volume fraction lead to more exergy efficiency. The maximum value of 26.32% in the exergy efficiency was obtained at a volume fraction of 3% and a torsion ratio of 3, as the Re number goes from 60,000 to 18,000.


2019 ◽  
Vol 9 (13) ◽  
pp. 2673 ◽  
Author(s):  
Raizah

In the current work, the natural convection of dusty hybrid nanofluids in an enclosure including two inclined heated fins has been studied via mathematical simulation. The inclined heated fins are arranged near to the enclosure center with variations on their orientations and lengths. The present simulation is represented by two systems of equations for the hybrid nanofluids that are dusty. The pressure distributions for the dusty phase and hybrid nanofluids phase are evaluated using a SIMPLE algorithm based on the finite volume method. The numerical results are examined using contours of the streamlines, isotherms for the hybrid nanofluids and velocity components for the dusty phase. In addition, the graphical illustrations for profiles of the local and average Nusselt numbers are presented. The main results reveal that an increase in the mixture densities ratio and dusty parameter reduces the rate of the heat transfer. Both the local and average Nusselt numbers are supported as the fins lengths increase regardless of the fins’ rotation. In addition, the nanoparticles volume fraction enhances the thermal boundary layer near the top wall.


Sign in / Sign up

Export Citation Format

Share Document