scholarly journals Detailed Computational Modeling of the Developmental Self-Organization of Neuronal Structure and Function

2016 ◽  
Vol 10 ◽  
Author(s):  
Bauer Roman
Neuron ◽  
2021 ◽  
Author(s):  
Amanda M. Vanderplow ◽  
Andrew L. Eagle ◽  
Bailey A. Kermath ◽  
Kathryn J. Bjornson ◽  
Alfred J. Robison ◽  
...  

2012 ◽  
Vol 472-475 ◽  
pp. 3384-3389
Author(s):  
Zai Qiang Huo ◽  
Xue Qun Zhu

It is valuable to be researched in the application of science of complexity to the forest ecosystem. Forest ecosystem is an adaptive complex system which is suggested to be at the edge of chaos or at the criticality. The inner interaction of a forest ecosystem is the main driving force for the self-organization, complexity and order in the forest ecosystem. Forest ecosystem complexity is one of the research frontiers of ecological and evolutionary problems presently. The application of science of complexity to the forest ecosystem complexity studies, its concept, background, methodology and theory are briefly introduced. The forest ecosystem complexity is defined as the structure and function diversity, self-organization and the order of an ecosystem. Its main methods include the cellular automaton, genetic algorithm, game theory, complex network, etc. This paper has discussed mechanism and development of forest ecosystem complexity, by applying the principle and methods of science of complexity, which is a new approach for understanding ecological and evolutionary problems.


2006 ◽  
Vol 103 (12) ◽  
pp. 4723-4728 ◽  
Author(s):  
B. L. Chen ◽  
D. H. Hall ◽  
D. B. Chklovskii

2021 ◽  
Vol 12 ◽  
Author(s):  
Anna Nowak ◽  
Klaudyna Kojder ◽  
Joanna Zielonka-Brzezicka ◽  
Jacek Wróbel ◽  
Mateusz Bosiacki ◽  
...  

Alzheimer’s disease, a neurodegenerative disease, is one of the most common causes of dementia if elderly people worldwide. Alzheimer’s disease leads to the alienation of individuals and their exclusion from social and professional life. It is characterized mainly by the degradation of memory and disorientation, which occurs as a result of the loss of neuronal structure and function in different brain areas. In recent years, more and more attention has been paid to use in the treatment of natural bioactive compounds that will be effective in neurodegenerative diseases, including Alzheimer’s disease. G. biloba L. and its most frequently used standardized extract (EGb 761), have been used for many years in supportive therapy and in the prevention of cognitive disorders. The paper presents an overview of reports on the pathogenesis of Alzheimer’s disease, as well as a summary of the properties of G. biloba extract and its effects on the possible pathogenesis of the disease. By exploring more about the pathogenesis of the disease and the benefits of G. biloba extract for patients with Alzheimer’s disease, it will be possible to create an individualized therapeutic protocol to optimize the treatment.


2021 ◽  
Vol 16 (1) ◽  
pp. 126-132
Author(s):  
Harshwardhan J Tembhurnikar ◽  
Neha D Thool ◽  
Rasika J Patil ◽  
Ranjita K Das

Neurodegenerative disorders are nervous system disorders that result in the loss of neuronal structure and function. As shown in Alzheimer's and Parkinson's disease, these changes cause a loss of various capacities, including cognition and mobility. Several factors have been discovered to play a critical role in the etiology of common neurological illnesses, including oxidative stress and protein misfolding. It's still unclear if these factors cause or contribute to the progression of the illnesses. Despite efforts to understand the molecular and pathophysiological mechanisms behind these pathways, many aspects remain unknown. The goal of this review is to investigate the numerous factors linked to neurodegeneration.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2197
Author(s):  
Zachary M. Geisterfer ◽  
Gabriel Guilloux ◽  
Jesse C. Gatlin ◽  
Romain Gibeaux

Self-organization of and by the cytoskeleton is central to the biology of the cell. Since their introduction in the early 1980s, cytoplasmic extracts derived from the eggs of the African clawed-frog, Xenopus laevis, have flourished as a major experimental system to study the various facets of cytoskeleton-dependent self-organization. Over the years, the many investigations that have used these extracts uniquely benefited from their simplified cell cycle, large experimental volumes, biochemical tractability and cell-free nature. Here, we review the contributions of egg extracts to our understanding of the cytoplasmic aspects of self-organization by the microtubule and the actomyosin cytoskeletons as well as the importance of cytoskeletal filaments in organizing nuclear structure and function.


2001 ◽  
Vol 79 (2) ◽  
pp. 204-217 ◽  
Author(s):  
Michael W Baker ◽  
Eduardo R Macagno

The nervous system of the leech has been the subject of numerous studies since its "rediscovery" in the 1960s as a unique system for the study of the properties of glial cells. Subsequently, anatomical, physiological, and embryological studies of identified neurons have yielded a wealth of information about the differentiation of neuronal structure and function. In recent years, cellular approaches to the development of identified central and peripheral neurons have been complemented by molecular studies that promise to reveal the mechanisms by which neurons form their complex arbors and innervate specific targets.


1994 ◽  
Vol 17 (11) ◽  
pp. 453-458 ◽  
Author(s):  
Hans-Ulrich Dodt ◽  
Walter Zieglga¨nsberger

2011 ◽  
Vol 7 (2) ◽  
pp. e1001088 ◽  
Author(s):  
Anna Grosberg ◽  
Po-Ling Kuo ◽  
Chin-Lin Guo ◽  
Nicholas A. Geisse ◽  
Mark-Anthony Bray ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document