scholarly journals Small Molecule Treatments Improve Differentiation Potential of Human Amniotic Fluid Stem Cells

Author(s):  
Aistė Zentelytė ◽  
Deimantė Žukauskaitė ◽  
Ieva Jacerytė ◽  
Veronika V. Borutinskaitė ◽  
Rūta Navakauskienė

Human amniotic fluid stem cells (AFSC) are an exciting and very promising source of stem cells for therapeutic applications. In this study we investigated the effects of short-term treatments of small molecules to improve stem cell properties and differentiation capability. For this purpose, we used epigenetically active compounds, such as histone deacetylase inhibitors Trichostatin A (TSA) and sodium butyrate (NaBut), as well as multifunctional molecules of natural origin, such as retinoic acid (RA) and vitamin C (vitC). We observed that combinations of these compounds triggered upregulation of genes involved in pluripotency (KLF4, OCT4, NOTCH1, SOX2, NANOG, LIN28a, CMYC), but expression changes of these proteins were mild with only significant downregulation of Notch1. Also, some alterations in cell surface marker expression was established by flow cytometry with the most explicit changes in the expression of CD105 and CD117. Analysis of cellular energetics performed using Seahorse analyzer and assessment of gene expression related to cell metabolism and respiration (NRF1, HIF1α, PPARGC1A, ERRα, PKM, PDK1, LDHA, NFKB1, NFKB2, RELA, RELB, REL) revealed that small molecule treatments stimulate AFSCs toward a more energetically active phenotype. To induce cells to differentiate toward neurogenic lineage several different protocols including commercial supplements N2 and B27 together with RA were used and compared to the same differentiation protocols with the addition of a pre-induction step consisting of a combination of small molecules (vitC, TSA and RA). During differentiation the expression of several neural marker genes was analyzed (Nestin, MAP2, TUBB3, ALDH1L1, GFAP, CACNA1D, KCNJ12, KCNJ2, KCNH2) and the beneficial effect of small molecule treatment on differentiation potential was observed with upregulated gene expression. Differentiation was also confirmed by staining TUBB3, NCAM1, and Vimentin and assessed by secretion of BDNF. The results of this study provide valuable insights for the potential use of short-term small molecule treatments to improve stem cell characteristics and boost differentiation potential of AFSCs.

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Jurate Savickiene ◽  
Grazina Treigyte ◽  
Sandra Baronaite ◽  
Giedre Valiuliene ◽  
Algirdas Kaupinis ◽  
...  

Human amniotic fluid stem cells have become an attractive stem cell source for potential applications in regenerative medicine and tissue engineering. The aim of this study was to characterize amniotic fluid-derived mesenchymal stem cells (AF-MSCs) from second- and third-trimester of gestation. Using two-stage protocol, MSCs were successfully cultured and exhibited typical stem cell morphological, specific cell surface, and pluripotency markers characteristics. AF-MSCs differentiated into adipocytes, osteocytes, chondrocytes, myocytes, and neuronal cells, as determined by morphological changes, cell staining, and RT-qPCR showing the tissue-specific gene presence for differentiated cell lineages. Using SYNAPT G2 High Definition Mass Spectrometry technique approach, we performed for the first time the comparative proteomic analysis between undifferentiated AF-MSCs from late trimester of gestation and differentiated into myogenic, adipogenic, osteogenic, and neurogenic lineages. The analysis of the functional and expression patterns of 250 high abundance proteins selected from more than 1400 demonstrated the similar proteome of cultured and differentiated AF-MSCs but the unique changes in their expression profile during cell differentiation that may help the identification of key markers in differentiated cells. Our results provide evidence that human amniotic fluid of second- and third-trimester contains stem cells with multilineage potential and may be attractive source for clinical applications.


2011 ◽  
Vol 23 (1) ◽  
pp. 243 ◽  
Author(s):  
S.-A. Choi ◽  
J.-H. Lee ◽  
K.-J. Kim ◽  
E.-Y. Kim ◽  
K.-S. Park ◽  
...  

Adult stem cells have the capacity to differentiate into several different cell types, although their differentiation potential is limited compared with that of embryonic stem cells. Thus, adult stem cells are regarded as an exciting source for new cell therapies. Recent observations also indicate that stem cells derived from second-trimester amniocentesis are pluripotent – capable of differentiating into multiple lineages, including representatives of all 3 embryonic germ layers. In addition, amniotic fluid stem cells can be used in the generation of disease- or patient-specific stem cells, and amniotic fluid stem cells could be an ideal source for autologous cell replacement therapy in the later life of the fetus. The aim of the present study was to investigate isolation and characterisation of human amniotic fluid-derived mesenchymal stem cells (hAFS). We successfully isolated and characterised hAFS. Amniotic fluid samples were collected in the second trimester (median gestational age: 16 weeks, range: 15–17 weeks) for prenatal diagnosis. Specimens (2 mL) were centrifuged and incubated in low-glucose DMEM supplemented with 10% FBS, 25 ng of basic fibroblast growth factor, and 10 ng of epidermal growth factor at 37°C with 5% CO2. Human amniotic fluid cell (passage 6) expression of stem cell specific markers OCT-4, SOX2, Rex1, FGF4, and NANOG was confirmed by RT-PCR. Flow cytometric analysis showed that hAFS (passage 10) were positive for CD44, CD29, CD146, STRO1, and CD90 but negative for CD19. Immunocytochemical analysis of hAFS (passage 11) also showed the expression of OCT-4, SSEA-1, CD44, CD29, CD146, STRO1, and CD90, but hAFS were negative for CD19 and CD14. In conclusion, according to the previous studies on other mammalians, hAFS are an appropriate source of pluripotent stem cells. Here, we demonstrated that hAFS have a high expression of stem cell specific marker, including embryonic stem cell marker and mesenchymal stem cell marker. Therefore, amniotic fluid may be a suitable alternative source of multipotent stem cells.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Tullia Maraldi ◽  
Marianna Guida ◽  
Manuela Zavatti ◽  
Elisa Resca ◽  
Laura Bertoni ◽  
...  

Human amniotic fluid stem cells (AFSC) are an attractive source for cell therapy due to their multilineage differentiation potential and accessibility advantages. However the clinical application of human stem cells largely depends on their capacity to expandin vitro, since there is an extensive donor-to-donor heterogeneity. Reactive oxygen species (ROS) and cellular oxidative stress are involved in many physiological and pathophysiological processes of stem cells, including pluripotency, proliferation, differentiation, and stress resistance. The mode of action of ROS is also dependent on the localization of their target molecules. Thus, the modifications induced by ROS can be separated depending on the cellular compartments they affect. NAD(P)H oxidase family, particularly Nox4, has been known to produce ROS in the nucleus. In the present study we show that Nox4 nuclear expression (nNox4) depends on the donor and it correlates with the expression of transcription factors involved in stemness regulation, such as Oct4, SSEA-4, and Sox2. Moreover nNox4 is linked with the nuclear localization of redox sensitive transcription factors, as Nrf2 and NF-κB, and with the differentiation potential. Taken together, these results suggest that nNox4 regulation may have important effects in stem cell capability through modulation of transcription factors and DNA damage.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1267-1267
Author(s):  
Elisa Tomellini ◽  
Iman Fares ◽  
Bernhard Lehnertz ◽  
Jalila Chagraoui ◽  
Nadine Mayotte ◽  
...  

Abstract Hematopoietic stem cell (HSC) transplantation constitutes one of the most effective therapeutic strategies to treat numerous hematological diseases. Cord blood (CB) is one of the most attractive donor sources of stem cells for this procedure due to its rapid availability, HLA mismatches tolerance and low associated risk of chronic graft-versus-host disease. However, these advantages are offset by the limited cell dose in CB units, which can contribute to delayed hematopoietic engraftment following transplantation. Mastering ex vivo HSC expansion is therefore of great interest for clinical purposes and for genetic manipulation. HSCs can be functionally defined as either long-term (LT-HSC), providing life-long hematopoiesis and characterized by delayed engraftment pattern, or short-term repopulating stem cells (ST-HSC), providing early and transient hematopoietic recovery. Major hurdles hindering the study of these cell populations is the current inability to evaluate their content in cultured samples and the lack of understanding of the molecular mechanisms regulating stem cell self-renewal ex vivo. Those issues highly benefited from the discovery by our laboratory of the small molecule UM171, which promote HSC expansion ex vivo, as well as from the identification of EPCR as one of the most reliable surface markers for cultured HSCs. We now describe the identification of Integrin-α3 (ITGA3) as a novel marker for cultured HSCs. ITGA3 expression was found to be sufficient to split the primitive EPCR+CD90+CD133+CD34+CD45RA- HSC population in two functionally distinct fractions presenting only short-term (ITGA3-) and both short-term and long-term (ITGA3+) repopulating potential. ITGA3+ cells, as opposed to the ITGA3- fraction, exhibited robust multilineage differentiation potential and serial reconstitution ability in immunocompromised mice. This combination of markers identifies repopulating HSCs in culture by FACS beyond what is currently possible with other approaches, with a frequency of LT-HSC found in the ITGA3+ population estimated at 1:38 in day 7 UM171 expanded CB-cells. Moreover, lentiviral-mediated ITGA3 knockdown was shown to compromise the LT repopulating activity of cultured HSC in vivo. Gene expression profiling revealed striking molecular similarity between ITGA3+ and ITGA3- cells, showing overrepresentation of genes involved in fundamental hematopoietic programs known to govern HSC specification and function in both of these populations. However, ITGA3+ and ITGA3- subsets clearly clustered separately by principle component analysis, indicating broad differences in gene expression. Concordantly with their primitive phenotype, stem cell markers and cell quiescence are gene sets enriched in ITGA3+ cells, while progenitor markers, DNA replication, M/G1 and G2/M checkpoints, mRNA processing, reduction of hypoxia and Myc targets were significantly downregulated in these cells. Altogether, our results indicate that ITGA3 is a reliable marker for cultured HSCs, improving the accuracy of prospective HSC identification in culture. Deciphering the function of genes upregulated in primitive ITGA3+ HSCs will represent an invaluable resource for dissecting the genetic programs that govern hematopoietic stem cells biology. Disclosures Sauvageau: ExCellThera: Employment, Equity Ownership.


2016 ◽  
Vol 66 (6) ◽  
pp. 463-476 ◽  
Author(s):  
Florin Iordache ◽  
Andrei Constantinescu ◽  
Eugen Andrei ◽  
Bogdan Amuzescu ◽  
Ferdinand Halitzchi ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Prabin Upadhyaya ◽  
Alessandra Di Serafino ◽  
Luca Sorino ◽  
Patrizia Ballerini ◽  
Marco Marchisio ◽  
...  

Abstract Background Bleomycin, etoposide and cisplatin (BEP) are three chemotherapeutic agents widely used individually or in combination with each other or other chemotherapeutic agents in the treatment of various cancers. These chemotherapeutic agents are cytotoxic; hence, along with killing cancerous cells, they also damage stem cell pools in the body, which causes various negative effects on patients. The epigenetic changes due to the individual action of BEP on stem cells are largely unknown. Methods Human amniotic fluid stem cells (hAFSCs) were treated with our in-vitro standardized dosages of BEP individually, for seven days. The cells were harvested after the treatment and extraction of DNA and RNA were performed. Real-time PCR and flow cytometry were conducted for cell markers analysis. The global DNA methylation was quantified using 5mC specific kit and promoter and CpG methylation % through bisulfite conversion and pyrosequencing. Micro- RNAs (miRNAs) were quantified with real-time qPCR. Results The cytotoxic nature of BEP was observed even at low dosages throughout the experiment. We also investigated the change in the expression of various pluripotent and germline markers and found a significant change in the properties of the cells after the treatments. The methylation of DNA at global, promoter and individual CpG levels largely get fluctuated due to the BEP treatment. Several tested miRNAs showed differential expression. No positive correlation between mRNA and protein expression was observed for some markers. Conclusion Cytotoxic chemotherapeutic agents such as BEP were found to alter stem cell properties of hAFSCs. Different methylation profiles change dynamically, which may explain such changes in cellular properties. Data also suggests that the fate of hAFSCs after treatment may depend upon the interplay between the miRNAs. Finally, our results demonstrate that hAFSCs might prove to be a suitable in-vitro model of stem cells to predict genetic and epigenetic modification due to the action of various drugs.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Felipe de Lara Janz ◽  
Adriana de Aguiar Debes ◽  
Rita de Cássia Cavaglieri ◽  
Sérgio Aloísio Duarte ◽  
Carolina Martinez Romão ◽  
...  

Amniotic fluid (AF) was described as a potential source of mesenchymal stem cells (MSCs) for biomedicine purposes. Therefore, evaluation of alternative cryoprotectants and freezing protocols capable to maintain the viability and stemness of these cells after cooling is still needed. AF stem cells (AFSCs) were tested for different freezing methods and cryoprotectants. Cell viability, gene expression, surface markers, and plasticity were evaluated after thawing. AFSCs expressed undifferentiated genes Oct4 and Nanog; presented typical markers (CD29, CD44, CD90, and CD105) and were able to differentiate into mesenchymal lineages. All tested cryoprotectants preserved the features of AFSCs however, variations in cell viability were observed. In this concern, dimethyl sulfoxide (Me2SO) showed the best results. The freezing protocols tested did not promote significant changes in the AFSCs viability. Time programmed and nonprogrammed freezing methods could be used for successful AFSCs cryopreservation for 6 months. Although tested cryoprotectants maintained undifferentiated gene expression, typical markers, and plasticity of AFSCs, only Me2SO and glycerol presented workable viability ratios.


Author(s):  
Giedrė Valiulienė ◽  
Aistė Zentelytė ◽  
Elizabet Beržanskytė ◽  
Rūta Navakauskienė

Human amniotic fluid stem cells (hAFSCs) possess some characteristics with mesenchymal stem cells (MSCs) and embryonic stem cells and have a broader differentiation potential compared to MSCs derived from other sources. Although hAFSCs are widely researched, their analysis mainly involves stem cells (SCs) obtained from normal, fetus-unaffected gestations. However, in clinical settings, knowledge about hAFSCs from normal gestations could be poorly translational, as hAFSCs from healthy and fetus-diseased gestations may differ in their differentiation and metabolic potential. Therefore, a more thorough investigation of hAFSCs derived from pathological gestations would provide researchers with the knowledge about the general characteristics of these cells that could be valuable for further scientific investigations and possible future clinical applicability. The goal of this study was to look into the neurogenic and metabolic potential of hAFSCs derived from diseased fetuses, when gestations were concomitant with polyhydramnios and compare them to hAFSCs derived from normal fetuses. Results demonstrated that these cells are similar in gene expression levels of stemness markers (SOX2, NANOG, LIN28A, etc.). However, they differ in expression of CD13, CD73, CD90, and CD105, as flow cytometry analysis revealed higher expression in hAFSCs from unaffected gestations. Furthermore, hAFSCs from “Normal” and “Pathology” groups were different in oxidative phosphorylation rate, as well as level of ATP and reactive oxygen species production. Although the secretion of neurotrophic factors BDNF and VEGF was of comparable degree, as evaluated with enzyme-linked immunosorbent assay (ELISA) test, hAFSCs from normal gestations were found to be more prone to neurogenic differentiation, compared to hAFSCs from polyhydramnios. Furthermore, hAFSCs from polyhydramnios were distinguished by higher secretion of pro-inflammatory cytokine TNFα, which was significantly downregulated in differentiated cells. Overall, these observations show that hAFSCs from pathological gestations with polyhydramnios differ in metabolic and inflammatory status and also possess lower neurogenic potential compared to hAFSCs from normal gestations. Therefore, further in vitro and in vivo studies are necessary to dissect the potential of hAFSCs from polyhydramnios in stem cell-based therapies. Future studies should also search for strategies that could improve the characteristics of hAFSCs derived from diseased fetuses in order for those cells to be successfully applied for regenerative medicine purposes.


Sign in / Sign up

Export Citation Format

Share Document