scholarly journals Microcarrier Screening and Evaluation for Dynamic Expansion of Human Periosteum-Derived Progenitor Cells in a Xenogeneic Free Medium

Author(s):  
Kathleen Van Beylen ◽  
Ioannis Papantoniou ◽  
Jean-Marie Aerts

An increasing need toward a more efficient expansion of adherent progenitor cell types arises with the advancements of cell therapy. The use of a dynamic expansion instead of a static planar expansion could be one way to tackle the challenges of expanding adherent cells at a large scale. Microcarriers are often reported as a biomaterial for culturing cells in suspension. However, the type of microcarrier has an effect on the cell expansion. In order to find an efficient expansion process for a specific adherent progenitor cell type, it is important to investigate the effect of the type of microcarrier on the cell expansion. Human periosteum-derived progenitor cells are extensively used in skeletal tissue engineering for the regeneration of bone defects. Therefore, we evaluated the use of different microcarriers on human periosteum-derived progenitor cells. In order to assess the potency, identity and viability of these cells after being cultured in the spinner flasks, this study performed several in vitro and in vivo analyses. The novelty of this work lies in the combination of screening different microcarriers for human periosteum-derived progenitor cells with in vivo assessments of the cells’ potency using the microcarrier that was selected as the most promising one. The results showed that expanding human periosteum-derived progenitor cells in spinner flasks using xeno-free medium and Star-Plus microcarriers, does not affect the potency, identity or viability of the cells. The potency of the cells was assured with an in vivo evaluation, where bone formation was achieved. In summary, this expansion method has the potential to be used for large scale cell expansion with clinical relevance.

2019 ◽  
Vol 14 (4) ◽  
pp. 305-319 ◽  
Author(s):  
Marietta Herrmann ◽  
Franz Jakob

The bone marrow hosts skeletal progenitor cells which have most widely been referred to as Mesenchymal Stem or Stromal Cells (MSCs), a heterogeneous population of adult stem cells possessing the potential for self-renewal and multilineage differentiation. A consensus agreement on minimal criteria has been suggested to define MSCs in vitro, including adhesion to plastic, expression of typical surface markers and the ability to differentiate towards the adipogenic, osteogenic and chondrogenic lineages but they are critically discussed since the differentiation capability of cells could not always be confirmed by stringent assays in vivo. However, these in vitro characteristics have led to the notion that progenitor cell populations, similar to MSCs in bone marrow, reside in various tissues. MSCs are in the focus of numerous (pre)clinical studies on tissue regeneration and repair.Recent advances in terms of genetic animal models enabled a couple of studies targeting skeletal progenitor cells in vivo. Accordingly, different skeletal progenitor cell populations could be identified by the expression of surface markers including nestin and leptin receptor. While there are still issues with the identity of, and the overlap between different cell populations, these studies suggested that specific microenvironments, referred to as niches, host and maintain skeletal progenitor cells in the bone marrow. Dynamic mutual interactions through biological and physical cues between niche constituting cells and niche inhabitants control dormancy, symmetric and asymmetric cell division and lineage commitment. Niche constituting cells, inhabitant cells and their extracellular matrix are subject to influences of aging and disease e.g. via cellular modulators. Protective niches can be hijacked and abused by metastasizing tumor cells, and may even be adapted via mutual education. Here, we summarize the current knowledge on bone marrow skeletal progenitor cell niches in physiology and pathophysiology. We discuss the plasticity and dynamics of bone marrow niches as well as future perspectives of targeting niches for therapeutic strategies.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1293-1293
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Within the bone marrow environment, adhesive interactions between stromal cells and extracellular matrix molecules are required for stem and progenitor cell survival, proliferation and differentiation as well as their transmigration between bone marrow (BM) and the circulation. This regulation is mediated by cell surface adhesion receptors. In experimental mouse stem cell transplantation models, several classes of cell adhesion receptors have been shown to be involved in the homing and engraftment of stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Using FACS analysis, the integrin a6 chain was now found to be ubiquitously (>95%) expressed in mouse hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, lin−Sca-1+c-Kit+CD34+) both in adult bone marrow and in fetal liver. In vitro, about 70% of mouse BM lin−Sca-1+c-Kit+ cells adhered to laminin-10/11 and 40% adhered to laminin-8. This adhesion was mediated by integrin a6b1 receptor, as shown by functional blocking monoclonal antibodies. We also used a functional blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of hematopoietic stem and progenitor cells. We found that the integrin a6 antibody inhibited the homing of bone marrow progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C was reduced by about 40% as compared to cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells (LTR), antibody treated bone marrow cells were first injected intravenously into lethally irradiated primary recipients. After three hours, bone marrow cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis 16 weeks after transplantation revealed an 80% reduction of stem cell activity of integrin a6 antibody treated cells as compared to cells treated with control antibody. These results suggest that integrin a6 plays an important role for hematopoietic stem and progenitor cell homing in vivo.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4237-4237
Author(s):  
Toni Peled ◽  
Noga R. Goudsmid ◽  
Frida Grynspan ◽  
Sophie Adi ◽  
Efrat Landau ◽  
...  

Abstract In vitro cell expansion is constrained by default pathways of commitment and differentiation resulting in limited expansion of hematopoietic stem-progenitor cells (HSPCs). Still, several ex vivo manipulations have been reported to achieve expansion of HSPCs by altering cell cycle kinetics and enhancing progression through the G1-S barrier. We have previously shown that addition of tetraethylenepentamine (TEPA), a polyamine copper chelator, to cytokine-supplemented CD34+ cell cultures modulates cytokine-driven hematopoietic cell fate in vitro, resulting in remarkable expansion of a cell population that displays phenotypic and functional characteristics of HSPCs (Exp Hematol.2004;32 (6):547–55). The objective of the present study was to evaluate the mechanism leading to expansion of early progenitor cells following short-term exposure to TEPA. To this end, cell cycle profile, tracking of proliferation history, as well as determination of actual numbers of progenitor subsets were studied. In order to follow the extent of proliferation by tracking the number of cellular divisions, freshly isolated CD34+ cells were labeled with PKH2, a membrane dye that is sequentially diluted during every cell division. Fluorescence intensities of CD34+ and that of a more immature CD34+CD38− cell subset were determined immediately after staining. The cells were then cultured in serum-containing medium and a cocktail of cytokines (SCF, TPO, IL-6, Flt3-ligand, at 50 ng/ml each and IL-3 at 20 ng/ml), with and without TEPA. Total nucleated cells (TNC), purified CD34+ cells and CD34+CD38− cells were analyzed for PKH2 fluorescence intensity during the first two weeks of culture. Cell cycle profile was detected with the DNA intercalating agent propidium iodide, which determines cellular DNA content. FACS analysis of the cultured cells as well as progenitor cell quantification by immuno-affinity purification revealed comparable expansion levels of TNC and CD34+ cells in both TEPA-treated and control cultures during the first two weeks, as previously published. Although similar CD34+ cell numbers were observed, the mean frequency of CD34+CD38− and CD34+CD38-Lin- cells within the CD34+ cell population was significantly higher in TEPA-treated cultures over the control (0.2 vs. 0.04 and 0.07 vs. 0.01, respectively; n=6, p<0.05). Median PKH2 fluorescence intensity of CD34+CD38− subset was two fold higher in TEPA than in control cultures, demonstrating that early progenitor cells derived from TEPA-treated cultures consistently accomplished less proliferation cycles as compared to early progenitor cells derived from control cultures. This effect was not mirrored by a significant alteration of the cell cycle profile (Control (%): G1=26±14, S=2.6±0.1, G2=0.7±0.4; TEPA(%): G1=29±12, S=1.7±0.9, G2=0.4±0.2). Taken together, the data suggest that during cycling, the CD34+CD38− phenotype is preserved more successfully in TEPA-treated than in control cultures, suggesting retention of self-renewing potential of early progenitor cells under these culture conditions. This mechanism also supports a role for TEPA in inhibition of early progenitor cell differentiation. Ongoing work is aimed at further defining whether phenotype reversion or self-renewal (or both) lie at the foundation of TEPA-mediated progenitor cell expansion.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1387-1387
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Homing of transplanted hematopoietic stem cells (HSC) in the bone marrow (BM) is a prerequisite for establishment of hematopoiesis following transplantation. However, although multiple adhesive interactions of HSCs with BM microenviroment are thought to critically influence their homing and subsequently their engraftment, the molecular pathways that control the homing of transplanted HSCs, in particular, of fetal HSCs are still not well understood. In experimental mouse stem cell transplantation models, several integrins have been shown to be involved in the homing and engraftment of both adult and fetal stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Furthermore, integrin a6 is required for adult mouse HSC homing to BM in vivo (Qian et al., Abstract American Society of Hematology, Blood 2004 ). We have now found that the integrin a6 chain like in adult HSC is ubiquitously (>99%) expressed also in fetal liver hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, LSK ). In vitro, fetal liver LSK cells adhere to laminin-10/11 and laminin-8 in an integrin a6b1 receptor-dependent manner, as shown by function blocking monoclonal antibodies. We have now used a function blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of fetal liver hematopoietic stem and progenitor cells to BM. The integrin a6 antibody inhibited homing of fetal liver progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C in BM was reduced by about 40% as compared to the cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells, BM cells were first incubated with anti-integrin alpha 6 or anti-integrin alpha 4 or control antibody, and then injected intravenously into lethally irradiated primary recipients. After three hours, BM cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis up to 16 weeks after transplantation showed that no reduction of stem cell reconstitution from integrin a6 antibody treated cells as compared to cells treated with control antibody. In accordance with this, fetal liver HSC from integrin a6 gene deleted embryos did not show any impairment of homing and engraftment in BM as compared to normal littermates. These results suggest that integrin a6 plays an important developmentally regulated role for homing of distinct hematopoietic stem and progenitor cell populations in vivo.


2009 ◽  
Vol 117 (10) ◽  
pp. 355-364 ◽  
Author(s):  
Gian Paolo Fadini ◽  
Mattia Albiero ◽  
Andrea Cignarella ◽  
Chiara Bolego ◽  
Christian Pinna ◽  
...  

The beneficial or detrimental effects of androgens on the cardiovascular system are debated. Endothelial progenitor cells are bone-marrow-derived cells involved in endothelial healing and angiogenesis, which promote cardiovascular health. Oestrogens are potent stimulators of endothelial progenitor cells, and previous findings have indicated that androgens may improve the biology of these cells as well. In the present study, we show that testosterone and its active metabolite dihydrotestosterone exert no effects on the expansion and function of late endothelial progenitors isolated from the peripheral blood of healthy human adult males, whereas they positively modulate early ‘monocytic’ endothelial progenitor cells. In parallel, we show that castration in rats is followed by a decrease in circulating endothelial progenitor cells, but that testosterone and dihydrotestosterone replacement fails to restore endothelial progenitor cells towards normal levels. This is associated with persistently low oestrogen levels after androgen replacement in castrated rats. In a sample of 62 healthy middle-aged men, we show that circulating endothelial progenitor cell levels are more directly associated with oestradiol, rather than with testosterone, concentrations. In conclusion, our results collectively demonstrate that androgens exert no direct effects on endothelial progenitor cell biology in vitro and in vivo.


As part of our attempts to understand principles that underly organism development, we have been studying the development of the rat optic nerve. This simple tissue is composed of three glial cell types derived from two distinct cellular lineages. Type-1 astrocytes appear to be derived from a monopotential neuroepithelial precursor, whereas type-2 astrocytes and oligodendrocytes are derived from a common oligodendrocyte-type-2 astrocyte (O-2A) progenitor cell. Type-1 astrocytes modulate division and differentiation of O-2A progenitor cells through secretion of platelet-derived growth factor, and can themselves be stimulated to divide by peptide mitogens and through stimulation of neurotransmitter receptors. In vitro analysis indicates that many dividing O-2A progenitors derived from optic nerves of perinatal rats differentiate symmetrically and clonally to give rise to oligodendrocytes, or can be induced to differentiate into type-2 astrocytes. O-2A perinatal progenitors can also differentiate to form a further O-2A lineage cell, the O-2A adult progenitor, which has properties specialized for the physiological requirements of the adult nervous system. In particular, O-2A adult progenitors have many of the features of stem cells, in that they divide slowly and asymmetrically and appear to have the capacity for extended self-renewal. The apparent derivation of a slowly and asymmetrically dividing cell, with properties appropriate for homeostatic maintenance of existing populations in the mature animal, from a rapidly dividing cell with properties suitable for the rapid population and myelination of central nervous system (CNS) axon tracts during early development, offers novel and unexpected insights into the possible origin of self-renewing stem cells and also into the role that generation of stem cells may play in helping to terminate the explosive growth of embryogenesis. Moreover, the properties of O-2A adult progenitor cells are consistent with, and may explain, the failure of successful myelin repair in conditions such as multiple sclerosis, and thus seem to provide a cellular biological basis for understanding one of the key features of an important human disease.


Blood ◽  
2009 ◽  
Vol 113 (26) ◽  
pp. 6716-6725 ◽  
Author(s):  
Andreas Reinisch ◽  
Nicole A. Hofmann ◽  
Anna C. Obenauf ◽  
Karl Kashofer ◽  
Eva Rohde ◽  
...  

Abstract Endothelial progenitor cells are critically involved in essential biologic processes, such as vascular homeostasis, regeneration, and tumor angiogenesis. Endothelial colony–forming cells (ECFCs) are endothelial progenitor cells with robust proliferative potential. Their profound vessel-forming capacity makes them a promising tool for innovative experimental, diagnostic, and therapeutic strategies. Efficient and safe methods for their isolation and expansion are presently lacking. Based on the previously established efficacy of animal serum–free large-scale clinical-grade propagation of mesenchymal stromal cells, we hypothesized that endothelial lineage cells may also be propagated efficiently following a comparable strategy. Here we demonstrate that human ECFCs can be recovered directly from unmanipulated whole blood. A novel large-scale animal protein-free humanized expansion strategy preserves the progenitor hierarchy with sustained proliferation potential of more than 30 population doublings. By applying large-scale propagated ECFCs in various test systems, we observed vascular networks in vitro and perfused vessels in vivo. After large-scale expansion and cryopreservation phenotype, function, proliferation, and genomic stability were maintained. For the first time, proliferative, functional, and storable ECFCs propagated under humanized conditions can be explored in terms of their therapeutic applicability and risk profile.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kenneth N. Grisé ◽  
Nelson X. Bautista ◽  
Krystal Jacques ◽  
Brenda L. K. Coles ◽  
Derek van der Kooy

Abstract Background Adult mammalian retinal stem cells (RSCs) readily proliferate, self-renew, and generate progeny that differentiate into all retinal cell types in vitro. RSC-derived progeny can be induced to differentiate into photoreceptors, making them a potential source for retinal cell transplant therapies. Despite their proliferative propensity in vitro, RSCs in the adult mammalian eye do not proliferate and do not have a regenerative response to injury. Thus, identifying and modulating the mechanisms that regulate RSC proliferation may enhance the capacity to produce RSC-derived progeny in vitro and enable RSC activation in vivo. Methods Here, we used medium-throughput screening to identify small molecules that can expand the number of RSCs and their progeny in culture. In vitro differentiation assays were used to assess the effects of synthetic glucocorticoid agonist dexamethasone on RSC-derived progenitor cell fate. Intravitreal injections of dexamethasone into adult mouse eyes were used to investigate the effects on endogenous RSCs. Results We discovered that high-affinity synthetic glucocorticoid agonists increase RSC self-renewal and increase retinal progenitor proliferation up to 6-fold without influencing their differentiation in vitro. Intravitreal injection of synthetic glucocorticoid agonist dexamethasone induced in vivo proliferation in the ciliary epithelium—the niche in which adult RSCs reside. Conclusions Together, our results identify glucocorticoids as novel regulators of retinal stem and progenitor cell proliferation in culture and provide evidence that GCs may activate endogenous RSCs.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2341-2341 ◽  
Author(s):  
Shiri Gur-Cohen ◽  
Tomer Itkin ◽  
Aya Ludin ◽  
Orit Kollet ◽  
Karin Golan ◽  
...  

Abstract Abstract 2341 Hematopoietic stem and progenitor cell (HSPC) egress from the bone marrow (BM) to the circulation is tightly regulated and is accelerated during stress conditions. The G-protein-coupled receptor protease-activated receptor-1 (PAR-1) and its activator thrombin play an important role in coagulation following injury and bleeding. We report that a single injection of thrombin induced rapid HSPC mobilization within one hour, increasing circulating leukocytes, predominantly CFU-C and primitive Lin−/Sca-1+/c-Kit+ (SKL) progenitor cells. This rapid mobilization was preceded by a dramatic decrease of SDF-1 (CXCL12) in BM stromal cells, including rare Nestin+ mesenchymal stem cells (MSC) which functionally express PAR-1 and release SDF-1. Thrombin injection also increased expression of PAR-1 and CXCR4 by BM HSPC. These results suggest involvement of the coagulation cascade of thrombin & PAR-1 in rapid SDF-1 secretion from niche supporting BM stromal cells as part of host defense and repair mechanisms. Administration of a PAR-1 specific antagonist (SCH79797) upregulated BM SDF-1 levels and significantly reduced the amounts of circulating CFU-C and primitive SKL progenitor cells. In vitro stimulation of BM mononuclear cells with thrombin for 1 hour led to increased CXCR4 expression by Lin−/c-Kit+ progenitors, accompanied by enhanced spontaneous and SDF-1 induced migration. Of note, specific PAR-1 inhibition in vitro significantly reduced SDF-1-directed migration of Lin-/c-Kit+ progenitors. Mechanistically, we found that thrombin - activated PAR-1 induced the downstream p38 MAPK and eNOS (nitric oxide synthase) signaling pathways. Long term repopulating hematopoietic stem cells (HSC) in murine BM highly express endothelial protein C receptor (EPCRhigh) (Balazs & Mulligan et al Blood 2006; Kent & Eaves et al Blood 2009). EPCR is expressed primarily on endothelial cells (EC) and has anti coagulation and anti inflammatory roles. Surface EPCR expression on EC is downregulated by many factors, including PAR-1 activation by thrombin, a process which is termed shedding and is not fully understood. Importantly, we found that over 90% of BM CD45+/EPCRhigh long-term HSC express PAR-1 and that circulating primitive HSPC in the blood and spleen lack EPCRhigh expression. In addition, in-vivo thrombin administration downregulated EPCR from BM HSC via eNOS signaling, thus allowing the release of stem cells from their BM microenvironment anchorage to the circulation. Correspondingly, in eNOS deficient mice, thrombin failed to induce PAR-1 upregulation, EPCR shedding, and HSPC mobilization. Recently, we reported that the antioxidant NAC inhibits G-CSF induced mobilization (Tesio & Lapidot et al Blood 2011). Co-administration of G-CSF with NAC prevented PAR-1 upregulation, concomitantly with reduced HSPC mobilization and increased levels of EPCRhigh HSC in the BM. Treatment of PAR-1 antagonist with G-CSF inhibited PAR-1 and CXCR4 upregulation on BM leukocytes and immature Lin−/c-Kit+ cells accompanied by increased levels of BM EPCRhigh HSC and reduced HSPC mobilization. Tissue factor (TF) is the main initiator of the coagulation system via the formation of an enzymatic “prothrombinase complex” that converts prothrombin to active thrombin. Unexpectedly, we found a unique structure of cell clusters expressing TF, located preferentially in the trabecular-rich area of the femoral metaphysis in murine bone tips, a region highly exposed to osteoclast/osteoblast bone remodeling. In vitro, immature osteoclasts exhibited increased TF expression in cell fusion areas, suggesting that in vivo osteoclast maturation activates the coagulation thrombin/PAR-1 axis of HSPC migration to the circulation. Finally, mimicking bacterial infection a single injection of Lipopolysaccharide (LPS), rapidly and systemically upregulated TF in the murine BM. LPS treatment prompted an increase in thrombin generation and subsequently HSPC mobilization, which was blocked by the PAR-1 antagonist. In conclusion, our study reveals a new role for the coagulation signaling axis, which acts on both hematopoietic and stromal BM cells to regulate steady state HSPC egress and enhanced mobilization from the BM. This thrombin/PAR-1 signaling cascade involves SDF-1/CXCR4 interactions, immature osteoclast TF activity, Nestin+/PAR-1+ MSC secretion of SDF-1 and EPCR shedding from hematopoietic stem cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 483-483
Author(s):  
Yael Porat ◽  
Efrat Assa-Kunik ◽  
Michael Belkin ◽  
Shlomo Bulvik

Abstract Abstract 483 Background: Recent data show that dendritic cells (DCs) are important component of stem cell niches in the bone marrow and spleen, and as such may have a role in stem/progenitor cell homeostasis and in pro- and anti-angiogenic processes (Gabrilovich, 1996; Dikov, 2005; Sozzani, 2007). For the first time we report a process in which human Hematopoietic Stem/Progenitor Cells (HSPC) are specifically stimulated by activated DCs. This newly developed process makes it possible to use even unmobilized blood cells as a source for sufficient numbers of potentially therapeutic stem/progenitor cells, thus eliminating the need for surgical bone marrow harvesting and G-CSF mobilization. Goal: To show that DCs can direct the generation of an Enriched Endothelial Progenitor Cell (EnEPC) population, which includes Endothelial Progenitor Cells (EPC) and HSPCs, addressed to treat blood vessel malfunction. Methods: Samples of 250 ml blood from both healthy and diabetic patients were collected under hospital's IRB (Bulvik 15/150109) and used as the cell source. Selected immature plasmacytoid and myeloid DCs were alternatively activated for 2–24 hours in order to induce pro-angiogenic signals before being co-cultured with HSPCs. Cultures of up to 66 hours resulted in the generation of EnEPC in a formulation named BC1. BC1 was tested in-vitro by FACS, tube formation, colony forming units (CFU) and cytokine secretion tests. In-vivo BC1 was tested in the hind limb ischemia model (Goto, 2006; Kang, 2009) of critical limb ischemia (CLI) in order to evaluate its therapeutic potential, dosing levels and bio-distribution following intramuscular transplantation (IM). The study applied a genetically modified SCID/Nude mice model supporting evaluation of both safety and efficacy of BC1 treatment. A 21-day controlled blinded experiment included a control medium group (N=10); unprocessed cells (PreBC1, N=5); two BC1 groups of 2.5×10^6/mouse, BC1-1 (N=10) cultured for 1day and BC1-3 (N=10) for 3 and a lower cell dose group of 0.5×10^6/Mouse BC1-31 (N=5). Results: DC directed BC1 containing 70 ±5×10^6 cells with a viability of 96.9±1.9% is composed of a mixture of 40.2±11.9% EPC (expressing Ulex-lectin and uptake of AcLDL, CD202b (Tie2), CD309 (VEGGFR-2; KDR), CD31 and VEGFR1) and 29.8±14.3% HSPC (co-expressing CD34 and the migration/homing marker CD184 /CXCR4-R). In-vitro functional tests demonstrated angiogenic and hematopoietic potential and secretion of IL-8, VEGF, and IL-10 but not TNF and IFN. In-vivo BC1 was found efficient and safe in the hind-limb ischemia model. Evaluation of clinical signs revealed an improvement in limb function and score in all BC1 treated groups over the control medium group. BC1 treatment doubled the blood flow (BF) to the legs from an average of 23±5% after injury to an average of 51±3.1% on day 21 after treatment (p<0.005). Conclusions: The presented data show that activated DCs can direct in-vitro cellular interactions resulting in a potentially therapeutic EnEPC population after a short-term culture of HSPC. This process makes it possible to use unmobilized blood as the raw material for generating stem/progenitor cell products. The method described here is far safer for patients and much more convenient for clinicians compared to existing methods, such as G-CSF mobilization or bone marrow and fat cells harvesting. Further research needs to be done in order to test the safety and efficacy of these cells in patients suffering from cardiovascular diseases and blood vessel malfunctions. Disclosures: Porat: BioGenCell: Employment, Equity Ownership, Research Funding; Laniado Hospital: Consultancy. Assa-Kunik:BioGenCell: Employment; Laniado Hospital: Employment. Belkin:BioGenCell: Consultancy, Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document