scholarly journals Real-Time and Dynamically Consistent Estimation of Muscle Forces Using a Moving Horizon EMG-Marker Tracking Algorithm—Application to Upper Limb Biomechanics

Author(s):  
François Bailly ◽  
Amedeo Ceglia ◽  
Benjamin Michaud ◽  
Dominique M. Rouleau ◽  
Mickael Begon

Real-time biofeedback of muscle forces should help clinicians adapt their movement recommendations. Because these forces cannot directly be measured, researchers have developed numerical models and methods informed by electromyography (EMG) and body kinematics to estimate them. Among these methods, static optimization is the most computationally efficient and widely used. However, it suffers from limitation, namely: unrealistic joint torques computation, non-physiological muscle forces estimates and inconsistent for motions inducing co-contraction. Forward approaches, relying on numerical optimal control, address some of these issues, providing dynamically consistent estimates of muscle forces. However, they result in a high computational cost increase, apparently disqualifying them for real-time applications. However, this computational cost can be reduced by combining the implementation of a moving horizon estimation (MHE) and advanced optimization tools. Our objective was to assess the feasibility and accuracy of muscle forces estimation in real-time, using a MHE. To this end, a 4-DoFs arm actuated by 19 Hill-type muscle lines of action was modeled for simulating a set of reference motions, with corresponding EMG signals and markers positions. Excitation- and activation-driven models were tested to assess the effects of model complexity. Four levels of co-contraction, EMG noise and marker noise were simulated, to run the estimator under 64 different conditions, 30 times each. The MHE problem was implemented with three cost functions: EMG-markers tracking (high and low weight on markers) and marker-tracking with least-squared muscle excitations. For the excitation-driven model, a 7-frame MHE was selected as it allowed the estimator to run at 24 Hz (faster than biofeedback standard) while ensuring the lowest RMSE on estimates in noiseless conditions. This corresponds to a 3,500-fold speed improvement in comparison to state-of-the-art equivalent approaches. When adding experimental-like noise to the reference data, estimation error on muscle forces ranged from 1 to 30 N when tracking EMG signals and from 8 to 50 N (highly impacted by the co-contraction level) when muscle excitations were minimized. Statistical analysis was conducted to report significant effects of the problem conditions on the estimates. To conclude, the presented MHE implementation proved to be promising for real-time muscle forces estimation in experimental-like noise conditions, such as in biofeedback applications.

2021 ◽  
Author(s):  
Ben Serrien ◽  
Klevis Aliaj ◽  
Todd Pataky

Marker-based inverse kinematics (IK) is prone to errors arising from measurementnoise and soft-tissue artefacts. Various least-squares and Bayesian methods canbe applied to limit the estimation error to a minimum. Recently proposed meth-ods like Bayesian IK come at an increased computational cost however. In thistechnical paper, we present an overview of eight different least squares or BayesianIK methods, including their accuracy and computational load for IK problemsinvolving a single rigid body and three rotational degrees-of-freedom, whose at-titude is estimated from four noisy marker positions. The results indicate thatNon-Linear Least Squares, Variational Bayesian and full Bayesian IK are supe-rior to Singular Value Decomposition in terms of accuracy, with approximatelya two-fold error reduction. However, only Non-Linear Least Squares and Varia-tional Bayesian IK are computationally efficient enough to scale towards practicaluse in biomechanical applications, with computational durations of 1-10 ms; fullyBayesian procedures required approximately 30 s for single rotation calculations.All Python code and supplementary material can be found in this paper’s GitHubrepository: https://github.com/benserrien/pybik.


2018 ◽  
Author(s):  
Bart Doekemeijer ◽  
Sjoerd Boersma ◽  
Lucy Pao ◽  
Torben Knudsen ◽  
Jan-Willem van Wingerden

Abstract. Wind farm control often relies on computationally inexpensive surrogate models to predict the dynamics inside a farm. However, the reliability of these models over the spectrum of wind farm operation remains questionable due to the many uncertainties in the atmospheric conditions and tough-to-model flow dynamics at a range of spatial and temporal scales relevant for control. A closed-loop control framework is proposed in which a simplified dynamical LES model is calibrated and used for optimization in real time. This paper presents an estimation solution with an Ensemble Kalman filter (EnKF) at its core, which calibrates the surrogate model to the actual atmospheric conditions. The estimator is tested in high-fidelity simulations of a nine-turbine wind farm. Using exclusively turbine SCADA measurements, the adaptability to modeling errors and changes in atmospheric conditions (TI, wind speed) is shown. Convergence is reached within 400 seconds of operation, after which the estimation error in flow fields is negligible. At a low computational cost of 1.2 s on an 8-core CPU, this algorithm shows comparable accuracy to the state of the art from the literature while being approximately two orders of magnitude faster. Using the calibration solution presented, the surrogate model can be used for accurate forecasting and optimization.


2018 ◽  
Vol 3 (2) ◽  
pp. 749-765 ◽  
Author(s):  
Bart M. Doekemeijer ◽  
Sjoerd Boersma ◽  
Lucy Y. Pao ◽  
Torben Knudsen ◽  
Jan-Willem van Wingerden

Abstract. Wind farm control often relies on computationally inexpensive surrogate models to predict the dynamics inside a farm. However, the reliability of these models over the spectrum of wind farm operation remains questionable due to the many uncertainties in the atmospheric conditions and tough-to-model dynamics at a range of spatial and temporal scales relevant for control. A closed-loop control framework is proposed in which a simplified model is calibrated and used for optimization in real time. This paper presents a joint state-parameter estimation solution with an ensemble Kalman filter at its core, which calibrates the surrogate model to the actual atmospheric conditions. The estimator is tested in high-fidelity simulations of a nine-turbine wind farm. Exclusively using measurements of each turbine's generated power, the adaptability to modeling errors and mismatches in atmospheric conditions is shown. Convergence is reached within 400 s of operation, after which the estimation error in flow fields is negligible. At a low computational cost of 1.2 s on an 8-core CPU, this algorithm shows comparable accuracy to the state of the art from the literature while being approximately 2 orders of magnitude faster.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5170 ◽  
Author(s):  
Dat Ngo ◽  
Seungmin Lee ◽  
Quoc-Hieu Nguyen ◽  
Tri Minh Ngo ◽  
Gi-Dong Lee ◽  
...  

Vision-based systems operating outdoors are significantly affected by weather conditions, notably those related to atmospheric turbidity. Accordingly, haze removal algorithms, actively being researched over the last decade, have come into use as a pre-processing step. Although numerous approaches have existed previously, an efficient method coupled with fast implementation is still in great demand. This paper proposes a single image haze removal algorithm with a corresponding hardware implementation for facilitating real-time processing. Contrary to methods that invert the physical model describing the formation of hazy images, the proposed approach mainly exploits computationally efficient image processing techniques such as detail enhancement, multiple-exposure image fusion, and adaptive tone remapping. Therefore, it possesses low computational complexity while achieving good performance compared to other state-of-the-art methods. Moreover, the low computational cost also brings about a compact hardware implementation capable of handling high-quality videos at an acceptable rate, that is, greater than 25 frames per second, as verified with a Field Programmable Gate Array chip. The software source code and datasets are available online for public use.


2020 ◽  
Vol 2020 (14) ◽  
pp. 378-1-378-7
Author(s):  
Tyler Nuanes ◽  
Matt Elsey ◽  
Radek Grzeszczuk ◽  
John Paul Shen

We present a high-quality sky segmentation model for depth refinement and investigate residual architecture performance to inform optimally shrinking the network. We describe a model that runs in near real-time on mobile device, present a new, highquality dataset, and detail a unique weighing to trade off false positives and false negatives in binary classifiers. We show how the optimizations improve bokeh rendering by correcting stereo depth misprediction in sky regions. We detail techniques used to preserve edges, reject false positives, and ensure generalization to the diversity of sky scenes. Finally, we present a compact model and compare performance of four popular residual architectures (ShuffleNet, MobileNetV2, Resnet-101, and Resnet-34-like) at constant computational cost.


Author(s):  
Kiran Ahuja ◽  
Brahmjit Singh ◽  
Rajesh Khanna

Background: With the availability of multiple options in wireless network simultaneously, Always Best Connected (ABC) requires dynamic selection of the best network and access technologies. Objective: In this paper, a novel dynamic access network selection algorithm based on the real time is proposed. The available bandwidth (ABW) of each network is required to be estimated to solve the network selection problem. Method: Proposed algorithm estimates available bandwidth by taking averages, peaks, low points and bootstrap approximation for network selection. It monitors real-time internet connection and resolves the selection issue in internet connection. The proposed algorithm is capable of adapting to prevailing network conditions in heterogeneous environment of 2G, 3G and WLAN networks without user intervention. It is implemented in temporal and spatial domains to check its robustness. Estimation error, overhead, estimation time with the varying size of traffic and reliability are used as the performance metrics. Results: Through numerical results, it is shown that the proposed algorithm’s ABW estimation based on bootstrap approximation gives improved performance in terms of estimation error (less than 20%), overhead (varies from 0.03% to 83%) and reliability (approx. 99%) with respect to existing techniques. Conclusion: Our proposed methodology of network selection criterion estimates the available bandwidth by taking averages, peaks, and low points and bootstrap approximation method (standard deviation) for the selection of network in the wireless heterogeneous environment. It monitors real-time internet connection and resolves internet connections selection issue. All the real-time usage and test results demonstrate the productivity and adequacy of available bandwidth estimation with bootstrap approximation as a practical solution for consistent correspondence among heterogeneous wireless networks by precise network selection for multimedia services.


Author(s):  
Qiang Yu ◽  
Feiqiang Liu ◽  
Long Xiao ◽  
Zitao Liu ◽  
Xiaomin Yang

Deep-learning (DL)-based methods are of growing importance in the field of single image super-resolution (SISR). The practical application of these DL-based models is a remaining problem due to the requirement of heavy computation and huge storage resources. The powerful feature maps of hidden layers in convolutional neural networks (CNN) help the model learn useful information. However, there exists redundancy among feature maps, which can be further exploited. To address these issues, this paper proposes a lightweight efficient feature generating network (EFGN) for SISR by constructing the efficient feature generating block (EFGB). Specifically, the EFGB can conduct plain operations on the original features to produce more feature maps with parameters slightly increasing. With the help of these extra feature maps, the network can extract more useful information from low resolution (LR) images to reconstruct the desired high resolution (HR) images. Experiments conducted on the benchmark datasets demonstrate that the proposed EFGN can outperform other deep-learning based methods in most cases and possess relatively lower model complexity. Additionally, the running time measurement indicates the feasibility of real-time monitoring.


2021 ◽  
pp. 1-13
Author(s):  
Jonghyuk Kim ◽  
Jose Guivant ◽  
Martin L. Sollie ◽  
Torleiv H. Bryne ◽  
Tor Arne Johansen

Abstract This paper addresses the fusion of the pseudorange/pseudorange rate observations from the global navigation satellite system and the inertial–visual simultaneous localisation and mapping (SLAM) to achieve reliable navigation of unmanned aerial vehicles. This work extends the previous work on a simulation-based study [Kim et al. (2017). Compressed fusion of GNSS and inertial navigation with simultaneous localisation and mapping. IEEE Aerospace and Electronic Systems Magazine, 32(8), 22–36] to a real-flight dataset collected from a fixed-wing unmanned aerial vehicle platform. The dataset consists of measurements from visual landmarks, an inertial measurement unit, and pseudorange and pseudorange rates. We propose a novel all-source navigation filter, termed a compressed pseudo-SLAM, which can seamlessly integrate all available information in a computationally efficient way. In this framework, a local map is dynamically defined around the vehicle, updating the vehicle and local landmark states within the region. A global map includes the rest of the landmarks and is updated at a much lower rate by accumulating (or compressing) the local-to-global correlation information within the filter. It will show that the horizontal navigation error is effectively constrained with one satellite vehicle and one landmark observation. The computational cost will be analysed, demonstrating the efficiency of the method.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1804
Author(s):  
Dimitar Stanev ◽  
Konstantinos Filip ◽  
Dimitrios Bitzas ◽  
Sokratis Zouras ◽  
Georgios Giarmatzis ◽  
...  

This study aims to explore the possibility of estimating a multitude of kinematic and dynamic quantities using subject-specific musculoskeletal models in real-time. The framework was designed to operate with marker-based and inertial measurement units enabling extensions far beyond dedicated motion capture laboratories. We present the technical details for calculating the kinematics, generalized forces, muscle forces, joint reaction loads, and predicting ground reaction wrenches during walking. Emphasis was given to reduce computational latency while maintaining accuracy as compared to the offline counterpart. Notably, we highlight the influence of adequate filtering and differentiation under noisy conditions and its importance for consequent dynamic calculations. Real-time estimates of the joint moments, muscle forces, and reaction loads closely resemble OpenSim’s offline analyses. Model-based estimation of ground reaction wrenches demonstrates that even a small error can negatively affect other estimated quantities. An application of the developed system is demonstrated in the context of rehabilitation and gait retraining. We expect that such a system will find numerous applications in laboratory settings and outdoor conditions with the advent of predicting or sensing environment interactions. Therefore, we hope that this open-source framework will be a significant milestone for solving this grand challenge.


Sign in / Sign up

Export Citation Format

Share Document