scholarly journals Using the Major Components (Cellulose, Hemicellulose, and Lignin) of Phyllostachys praecox Bamboo Shoot as Dietary Fiber

Author(s):  
Jinlai Yang ◽  
Liangru Wu ◽  
Huimin Yang ◽  
Yanhong Pan

Bamboo shoots are a renewable and abundant biomass containing cellulose, hemicellulose, and lignin. Although many studies have explored the applications of each of these components in the preparation of biochemicals and biopolymers, few studies have evaluated the utility of these components as a dietary fiber supplement. In this study, a powder consisting of the main components of bamboo shoots (cellulose, hemicellulose, and lignin) was prepared from fresh Phyllostachys praecox shoots and characterized by scanning electron microscopy, infrared spectroscopy, and X-ray diffraction. To evaluate the potential utility of these components as a dietary fiber supplement, we conducted an experiment in which this powder was supplemented in the diet of mice for 7 weeks. The experiment included three diet groups (n = 10/group): a low-fat control diet (LFC), high-fat diet (HFD), and high-fat diet with bamboo shoot powder (HFBSP). Compared with HFD mice, the body weights of LFC and HFBSP mice were lower, indicating that the addition of bamboo shoot powder could reduce the weight gain associated with the HFD. Bamboo shoot powder supplementation could also reduce the levels of triglycerides (TG), blood glucose (GLU), total cholesterol (CHOL), high-density lipoprotein (HDL-C), and low-density lipoprotein (LDL-C) in HFD mice. The fat histology images indicated that obesity was alleviated in HFBSP mice, and the liver histology images indicated that the addition of bamboo shoot powder to the HFD could reduce the risk of fatty liver disease. The addition of bamboo shoot powder to the HFD might also improve the gut microbiota of mice. Thus, the major components of bamboo shoot powder (cellulose, hemicellulose, and lignin) could be used as beneficial natural additives in the food industry.

Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 165
Author(s):  
Aziza Alrafiah

High-fat diet (HFD) is a major problem causing neuronal damage. Thymoquinone (TQ) could regulate oxidative stress and the inflammatory process. Hence, the present study elucidated the significant role of TQ on oxidative stress, inflammation, as well as morphological changes in the cerebellum of rats with HFD. Rats were divided into three groups as (1) control, (2) saturated HFD for eight weeks and (3) HFD supplementation (four weeks) followed by TQ 300 mg/kg/day treated (four weeks). After treatment, blood samples were collected to measure oxidative stress markers glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD), and inflammatory cytokines. Furthermore, neuronal morphological changes were also observed in the cerebellum of the rats. HFD rats show higher body weight (286.5 ± 7.4 g) as compared with the control group (224.67 ± 1.78 g). TQ treatment significantly (p < 0.05) lowered the body weight (225.83 ± 13.15 g). TQ produced a significant (p < 0.05) reduction in cholesterol, triglycerides, high-density lipoprotein (HDL), and low-density lipoprotein (LDL). The antioxidative enzymes significantly reduced in HFD rats (GSH, 1.46 ± 0.36 mol/L and SOD, 99.13 ± 5.41 µmol/mL) as compared with the control group (GSH, 6.25 ± 0.36 mol/L and SOD, 159.67 ± 10.67 µmol/mL). MDA was increased significantly in HFD rats (2.05 ± 0.25 nmol/L) compared to the control group (0.695 ± 0.11 nmol/L). Surprisingly, treatment with TQ could improve the level of GSH, MDA, and SOD. TQ treatment significantly (p < 0.05) reduced the inflammatory markers as compared with HFD alone. TQ treatment minimizes neuronal damage as well as reduces inflammation and improves antioxidant enzymes. TQ can be considered as a promising agent in preventing the neuronal morphological changes in the cerebellum of obese populations.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
El-Shaimaa A. Arafa ◽  
Waseem Hassan ◽  
Ghulam Murtaza ◽  
Manal Ali Buabeid

Obesity linked diabetes, popularly known as diabesity, has been viewed as a direct product of the modern lifestyle in both developed and developing countries, and its increased prevalence is seen as a major threat to public health globally. Ficus carica (FC) and Syzigium cumini (SC) are part of indigenous flora with traditional medicinal properties. Fresh seeds of SC fruit and fruit of FC were collected and macerated to obtain the final extract. Wistar rats were divided into seven groups fed either on a normal diet or high-fat diet (HFD) along with streptozocin (STZ) to induce diabesity. The crude extract of FC (FC.Cr.) and SC (SC.Cr.) were administered at 250 mg/kg/day and 500 mg/kg/day in induced diabesity state. Body weights, blood glucose level, complete blood count (CBC), cholesterol, triglycerides (TG), low-density lipoprotein (LDL), very-low-density lipoprotein (VLDL), and high-density lipoprotein (HDL) were recorded to analyze their effects on glucose and lipid metabolism. Further, superoxide dismutase (SOD) and malondialdehyde (MDA) were measured to examine their effects on lipid peroxidation and ant oxidative enzyme. Results showed that both FC.Cr. and SC.Cr. have the potential to control obesity-linked type 2 diabetes mellitus (T2DM) by lowering the body weights, serum glucose, cholesterol, TG, LDL, and VLDL, while increasing the protective effects of HDL dose-dependently. The crude extract of both plants showed significant activity to raise SOD and curb MDA under diabetic states. It was concluded that both FC.Cr. and SC.Cr. exhibited remarkable therapeutics potential in HFD-STZ-induced diabetic rats. However, we found that the effects of SC.Cr. are relatively more pronounced as compared to FC.Cr. in almost all parameters.


2021 ◽  
Author(s):  
Qi Li ◽  
Xiangjun Fang ◽  
Hangjun Chen ◽  
Yanchao Han ◽  
Ruiling Liu ◽  
...  

The effects of administration of bamboo shoot (Phyllostachys edulis) dietary fiber (BSDF) on high-fat diet (HDF) induced hyperlipidemia were studied with SD rats model. Results indicated that the body weight...


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Cong Liu ◽  
Zhuo Wang ◽  
Yulong Song ◽  
Dan Wu ◽  
Xuan Zheng ◽  
...  

This study investigated the effects of berberine on amelioration of hyperglycemia and hyperlipidemia and the mechanism involved in high glucose and high fat diet-induced diabetic hamsters. Golden hamsters fed with high glucose and high fat diet were medicated with metformin, simvastatin, and low or high dose of berberine (50 and 100 mg·kg−1) for 6 weeks. The results showed that the body weights were significantly lower in berberine-treated groups than control group. Histological analyses revealed that the treatment of berberine inhibited hepatic fat accumulation. Berberine significantly reduced plasma total cholesterol, triglyceride, free fatty acid, low density lipoprotein cholesterol, malondialdehyde, thiobarbituric acid-reactive substance, and 8-isoprostane level but significantly increased plasma superoxide dismutase activity. Glucose and insulin levels were significantly reduced in metformin and berberine-treated groups. Glucose tolerance tests documented that berberine-treated mice were more glucose tolerant. Berberine treatment increased expression of skeletal muscle glucose transporter 4 mRNA and significantly decreased liver low density lipoprotein receptor mRNA expression. The study suggested that berberine was effective in lowering blood glucose and lipids levels, reducing the body weight, and alleviating the oxidative stress in diabetic hamsters, which might be beneficial in reducing the cardiovascular risk factors in diabetes.


2019 ◽  
Vol 10 (2) ◽  
pp. 1181-1184
Author(s):  
Satheesh Naik K ◽  
Gurushanthaiah M ◽  
Nagesh Raju G ◽  
Lokanadham S ◽  
Seshadri Reddy V

Eclipta Alba has been used in traditional and folklore medicine to treat Hyperlipidemia and hepatic disorders. The present study was aimed to investigate the Antihyperlipidemic and hepatoprotective potentials of Eclipta Alba in high-fat diet -induced Albino rats and to determine the underlying mechanism.  A total of 30 adult albino rats of Wistar strain weighing 165–215 g were utilized. Animals were treated with high-fat diet for 8 weeks followed by post-treatment of E. Alba for 1 week, 2 weeks, and 3 weeks, respectively. After 12 h of fasting on the last day of the experiment, serum blood samples were collected in EDTA vials and processed for biochemical analysis.  A significant decrease in levels of total cholesterol and triglycerides was noted on animals treated with E. alba compared to high-fat diet animals. Treatment of hypercholesterolemic rats with E. Alba showed a marked decrease of serum low-density lipoprotein (LDL) and very LDL cholesterol concentrations compared to the hypercholesterolemic rats. High-fat diet feeding worsened the levels of serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, and alkaline phosphatase enzymes, whereas the same markers were significantly improved by supplementation with E. alba compared to the normal group.  E. alba acts as an antihyperlipidemic agent in hyperlipidemic conditions and helps for better health.


2018 ◽  
Vol 19 (12) ◽  
pp. 3903 ◽  
Author(s):  
Xiaofei Zhu ◽  
Jingyi Yang ◽  
Wenjuan Zhu ◽  
Xiaoxiao Yin ◽  
Beibei Yang ◽  
...  

The natural compound berberine has been reported to exhibit anti-diabetic activity and to improve disordered lipid metabolism. In our previous study, we found that such compounds upregulate expression of sirtuin 1—a key molecule in caloric restriction, it is, therefore, of great interest to examine the lipid-lowering activity of berberine in combination with a sirtuin 1 activator resveratrol. Our results showed that combination of berberine with resveratrol had enhanced hypolipidemic effects in high fat diet-induced mice and was able to decrease the lipid accumulation in adipocytes to a level significantly lower than that in monotherapies. In the high fat diet-induced hyperlipidemic mice, combination of berberine (25 mg/kg/day, oral) with resveratrol (20 mg/kg/day, oral) reduced serum total cholesterol by 27.4% ± 2.2%, and low-density lipoprotein-cholesterol by 31.6% ± 3.2%, which was more effective than that of the resveratrol (8.4% ± 2.3%, 6.6% ± 2.1%) or berberine (10.5% ± 1.95%, 9.8% ± 2.58%) monotherapy (p < 0.05 for both). In 3T3-L1 adipocytes, the treatment of 12 µmol/L or 20 µmol/L berberine combined with 25 µmol/L resveratrol showed a more significant inhibition of lipid accumulation observed by Oil red O stain compared with individual compounds. Moreover, resveratrol could increase the amount of intracellular berberine in hepatic L02 cells. In addition, the combination of berberine with resveratrol significantly increases the low-density-lipoprotein receptor expression in HepG2 cells to a level about one-fold higher in comparison to individual compound. These results implied that the enhanced effect of the combination of berberine with resveratrol on lipid-lowering may be associated with upregulation of low-density-lipoprotein receptor, and could be an effective therapy for hyperlipidemia in some obese-associated disease, such as type II diabetes and metabolic syndrome.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 748 ◽  
Author(s):  
Tzu-Hsuan Ou ◽  
Yu-Tang Tung ◽  
Ting-Hsuan Yang ◽  
Yi-Wen Chien

The aim of this study was to investigate the effect of melatonin on hepatic lipid metabolism in hamsters with high-fat diet (HFD)-induced dyslipidemia. Male Syrian hamsters were kept on either a chow control (C) or HFD for four weeks. After four weeks, animals fed the HFD were further randomly assigned to four groups: high-fat only (P), melatonin low-dosage (L), medium-dosage (M), and high-dosage (H) groups. The L, M, and H groups, respectively, received 10, 20, and 50 mg/kg/day of a melatonin solution, while the P and C groups received the ethanol vehicle. After eight weeks of the intervention, results showed that a low dose of melatonin significantly reduced HFD-induced hepatic cholesterol and triglycerides; decreased plasma cholesterol, triglycerides, and low-density lipoprotein cholesterol; and increased plasma high-density lipoprotein cholesterol (p < 0.05). In addition, melatonin markedly decreased activities of the hepatic lipogenic enzymes, acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) (p < 0.05), and elevated the relative hepatic carnitine palmitoyltransferase-1α expression in hamsters with HFD-induced hyperlipidemia. Consequently, melatonin reduced activities of the hepatic lipogenic enzymes, ACC and FAS. In summary, chronic melatonin administration improved HFD-induced dyslipidemia and hepatic lipid accumulation in Syrian hamsters with HFD-induced dyslipidemia, which might have occurred through inhibiting the lipogenesis pathway.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
O. B. Ibitoye ◽  
U. M. Ghali ◽  
J. B. Adekunle ◽  
J. N. Uwazie ◽  
T. O. Ajiboye

Dioscoreophyllum cumminsii (Stapf) Diels leaves are widely used in the treatment of diabetes, obesity, and cardiovascular related complications in Nigeria. This study investigates the anti-inflammatory and antiobesity effect of aqueous extract of Dioscoreophyllum cumminsii leaves in high-fat diet- (HFD-) induced obese rats. HFD-fed rats were given 100, 200, and 400 mgkg−1 body weight of aqueous extract of Dioscoreophyllum cumminsii leaves for 4 weeks starting from 9th week of HFD treatment. D. cumminsii leaves aqueous extract reversed HFD-mediated decrease in the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glucose 6-phosphate dehydrogenase. Moreover, HFD-mediated elevation in the levels of conjugated dienes, lipid hydroperoxides, malondialdehyde, protein carbonyl, and DNA fragmentation in rats liver was lowered. HFD-mediated alterations in serum total cholesterol, triacylglycerol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and very low-density lipoprotein cholesterol were significantly reversed by the extract. The treatment of HFD-fed rats reduced the levels of insulin, leptin, protein carbonyl, fragmented DNA, and tumour necrosis factor-α and interleukin- (IL-) 6 and IL- 8 and increased the adiponectin level. This study showed that aqueous extract of Dioscoreophyllum cumminsii leaves has potential antiobesity and anti-inflammatory effects through modulation of obesity-induced inflammation, oxidative stress, and obesity-related disorder in HFD-induced obese rats.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Bilal A. Zargar ◽  
Mubashir H. Masoodi ◽  
Bahar Ahmed ◽  
Showkat A. Ganie

The present study was intended to evaluate the effects of Paeonia emodi rhizome extracts on serum triglycerides (TGs), total cholesterol (TC), low density lipoprotein cholesterol (LDL-c), high density lipoprotein cholesterol (HDL-c), atherogenic index (AI), superoxide dismutase (SOD), and glutathione peroxidase (GPx). The plant was extensively examined for its in vitro antioxidant activity, and the preliminary phytochemical screening was carried out using standard protocols. Male Wistar rats were induced with hyperlipidemia using high-fat diet and were treated orally with hydroalcoholic and aqueous extracts at the dose of 200 mg/kg bw for 30 days. TGs, TC, LDL-c, and AI were significantly reduced while HDL-c, SOD, and GPx levels rose to a considerable extent. After subjecting to acute toxicity testing, the extracts were found to be safe. The observations suggest antihyperlipidemic and antioxidant potential of P. emodi in high-fat diet induced hyperlipidemic/oxidative stressed rats.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Liang Liu ◽  
Chao Gao ◽  
Ping Yao ◽  
Zhiyong Gong

A growing body of evidence has indicated that high-fat diet-induced nonalcoholic fatty liver disease is usually accompanied by oxidized low-density lipoprotein (ox-LDL) deposited in the liver. The current study aimed to investigate the effect of quercetin on high-fat diet-induced ox-LDL accumulation in the liver and to explore the potential underlying mechanisms. The results demonstrate that quercetin supplementation for 24 weeks significantly alleviated high-fat diet-induced liver damage and reduced hepatic cholesterol and ox-LDL level. Quercetin notably inhibited both mRNA and protein expression of CD36 (reduced by 53% and 71%, resp.) and MSR1 (reduced by 25% and 45%, resp.), which were upregulated by high-fat diet. The expression of LC3II was upregulated by 2.4 times whereas that of p62 and mTOR was downregulated by 57% and 63% by quercetin treatment. Therefore, the significantly improved autophagy lysosomal degradation capacity for ox-LDL may be implicated in the hepatoprotective effect of quercetin; scavenger receptors mediated ox-LDL uptake might also be involved.


Sign in / Sign up

Export Citation Format

Share Document