scholarly journals Mesoporous Silica Nanoparticles for Potential Immunotherapy of Hepatocellular Carcinoma

Author(s):  
Han Wu ◽  
Xin-Fei Xu ◽  
Jia-Qi Zhu ◽  
Ming-Da Wang ◽  
Chao Li ◽  
...  

Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related death worldwide, which lacks effective inhibition of progression and metastasis in the advanced clinical stage. Mesoporous silica nanoparticle (MSN)–based cytotoxic or immunoregulatory drug–loading strategies have attracted widespread attention in the recent years. As a representative of mesoporous biomaterials, MSNs have good biological characteristics and immune activation potential and can cooperate with adjuvants against HCC. This review summarizes the possible future development of the field from the perspective of tumor immunity and aims to stimulate the exploration of the immune mechanism of MSN-based therapy. Through this point of view, we hope to develop new clinical immune drugs that can be applied to HCC clinical management in the future.

Nanoscale ◽  
2018 ◽  
Vol 10 (45) ◽  
pp. 21041-21045 ◽  
Author(s):  
Xiao-Yu Zheng ◽  
Juan Pellico ◽  
Alexandr A. Khrapitchev ◽  
Nicola R. Sibson ◽  
Jason J. Davis

Integrating Dy-DOTA motifs into mesoporous silica nanoparticle scaffolds significantly amplifies the ultrahigh field T2 relaxivity via a Curie outer-sphere mechanism.


RSC Advances ◽  
2015 ◽  
Vol 5 (39) ◽  
pp. 30640-30646 ◽  
Author(s):  
Yue Yan ◽  
Jie Fu ◽  
Xin Liu ◽  
Tianfu Wang ◽  
Xiuyang Lu

An intracellular acidity-triggered doxorubicin release from “click chemistry” functionalized mesoporous silica nanoparticle was demonstrated.


Nanoscale ◽  
2018 ◽  
Vol 10 (19) ◽  
pp. 9141-9152 ◽  
Author(s):  
Xuyao Zhang ◽  
Jingyun Luan ◽  
Wei Chen ◽  
Jiajun Fan ◽  
Yanyang Nan ◽  
...  

Novel insights into mesoporous silica nanoparticle (MSN)-induced hepatotoxicity and the underlying mechanism, facilitating an increase of the biosafety of MSNs.


2016 ◽  
Vol 8 (12) ◽  
pp. 2561-2567 ◽  
Author(s):  
Shaping Huang ◽  
Liping Song ◽  
Zhidong Xiao ◽  
Yue Hu ◽  
Meiwen Peng ◽  
...  

In this paper, fluorescent graphene quantum dots (GQDs) grafted onto the surface of mesoporous silica nanoparticle (MSN) vehicles were prepared and characterized.


Author(s):  
Xuqi Peng ◽  
Gan Lin ◽  
Yun Zeng ◽  
Zhao Lei ◽  
Gang Liu

Hepatocellular carcinoma (HCC) is characterized by poor prognosis and high mortality. The treatment of HCC is closely related to the stage, and the early-stage of HCC patients usually accompanies a more long-term survival rate after clinical treatment. Hence, there are critical needs to develop effective imaging agents with superior diagnostic precision for HCC detection at an early stage. Recently, mesoporous silica nanoparticles (MSNs) based imaging agents have gained extensive attentions in HCC detection, which can serve as a multifunctional nanoplatform with controllable size and facile surface functionalization. This perspective summarizes recent advances in MSNs based imaging agents for HCC detection by the incorporation of several clinical imaging modalities. Multi-modal imaging system has been developed for higher spatial resolution and sensitivity. Even though some limitations and challenges need to be overcome, we envision the development of novel MSNs based imaging agents will offer great potential applications in clinical HCC detection.


2018 ◽  
Vol 232 (9-11) ◽  
pp. 1733-1740 ◽  
Author(s):  
Yan Chen ◽  
Juan Wang ◽  
Jianhua Liu ◽  
Lehui Lu

Abstract The anticancer drug doxorubicin (DOX) is locked in the mesoporous silica nanoparticle by coating FeIII-TA polymer, and its burst release can be achieved under acidic environment, along with the decreased longitudinal relaxivity. This nanoplatform shows great potential to monitoring the drug delivery process and the fate of the nanocarrier.


2014 ◽  
Vol 781 ◽  
pp. 17-24 ◽  
Author(s):  
Pragnesh N. Dave ◽  
Lakha V. Chopda

In the early 1990s the discovery of the MCM-41 and the M41S family of mesoporous materials had open new era in the chemistry and biology. They have prominent application inbiotechnological, biomedical and heterogeneous catalysts. Mesoporous silica nanoparticles (MSNs) exhibit unique structural features like as their large surface areas, tunable pore sizes in nanometer and well-defined surface properties. MSN materials which are comprised of a honeycomb-like porous structure with hundreds of empty mesoporous channel that are able to encapsulate relatively large amounts of biomolecules. They are ideal candidate for constructing multifunctional materials that encapsulate a variety of functional nanostructured materials. Multifunctional MSN materials have become one of the most attractive areas in nanobiotechnology and nanomedicine for various disease diagnosis and therapy. Multifunctional MSN have been successfully developed as a multifunctional platform to deliver therapeutic and diagnostic agents. Multifunctional MSNs are a highly promising platform for intracellular controlled release of drugs. In this review we discuss the recent developments in design and fabrication of multifunctional mesoporous silica nanoparticles in as efficient drug delivery applications such as the site-specific delivery and intracellular controlled release of drugs.Abbreviations;APTES; 3-aminopropyl triethoxy sialne, ATP; Adenosine triphospahate, CD; cyclodextrinCPT; camptothecin, CS; Chitosan,CTAB; cyltrimethylammonium bromide,DNA; Deoxyribonucleic acid,DOX; doxorubicin,EDC; 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide,FD; fluorescein disodium,FSP;Fluroscent particle ,IBU;ibuprofen,MCM; mobil composition material, MPS; 3-trimethoxylsilyl propyl methacrylate, MS; mesoporous silica,MSN; mesoporous silica nanoparticle, MSNs; mesoporous silica nanoparticles,MSNP; mesoporous silica nanoparticle,NPS; nanoparticles;PFDTES;perfluorodecyltriethoxysilane, PAA; polyacrylic acid,PR;photo responsive,PMAA; polymethyl methacrylate,SBF; simulated body fluid,TEOS;tetraethyl orthosilicate,TUNA;Thio undecyl-tetraethyleneglycoestero-nitrobenzylethyldimethyl ammonium bromide.


2018 ◽  
Vol 42 (7) ◽  
pp. 5045-5051
Author(s):  
Nhat Tri Vo ◽  
Astam K. Patra ◽  
Dukjoon Kim

A hollow doughnut shaped mesoporous silica nanoparticle filler that significantly enhances the dimensional thermal stability without sacrificing the optical properties of poly(ether sulfone) films is reported.


2020 ◽  
Vol 20 (12) ◽  
pp. 7362-7368
Author(s):  
Yongju He ◽  
Hui Xu ◽  
Shuquan Liang

A defect-related luminescent mesoporous silica nanoparticle (DLMSN) with simultaneous excellent luminescence, high drug loading efficiency and release capacity was prepared upon calcination of 3-aminopropyltriethoxysilane (APTES)-functionalized mesoporous silica nanoparticle (AP-MSN) under a relatively moderate temperature. Under ultraviolet excitation at 365 nm, DLMSN exhibited intense white-blue emission with a range of 400–500 nm, which was inferred to originate from the effective carbon or nitrogen defect in the particle causing by APTES calcination. Additionally, the luminescence intensity of DLMSN was significantly affected by APTES concentration and calcination temperature during the preparation procedure. Within all the tested values, the maximum luminescence intensity was achieved when APTES concentration and calcination temperature were 0.851 mmol and 300 °C, respectively. The drug storage and release tests demonstrated that DLMSN had efficient drug storage and good pH-dependent release for ibuprofen (IBU). Interestingly, ibuprofen-loaded DLMSN (IBU@DLMSN) still exhibit an intense luminescence with an emission peak at around 410 nm under 365 nm excitation, which gradually increased with the sustained release of IBU from IBU@DLMSN. These results suggest that the as-prepared DLMSN may have potential as a detectable nanocarrier in the drug delivery field.


Sign in / Sign up

Export Citation Format

Share Document