scholarly journals Effect of Different Cultivation Modes (Photoautotrophic, Mixotrophic, and Heterotrophic) on the Growth of Chlorella sp. and Biocompositions

Author(s):  
Hyun-Sik Yun ◽  
Young-Saeng Kim ◽  
Ho-Sung Yoon

In the past, biomass production using microalgae culture was dependent on inorganic carbon sources as microalgae are photosynthetic organisms. However, microalgae utilize both organic and inorganic carbon sources, such as glucose. Glucose is an excellent source of organic carbon that enhances biomass yield and the content of useful substances in microalgae. In this study, photoautotrophic, mixotrophic, and heterotrophic cultivation conditions were applied to three well-known strains of Chlorella (KNUA104, KNUA114, and KNUA122) to assess biomass productivity, and compositional changes (lipid, protein, and pigment) were evaluated in BG11 media under photoautotrophic, mixotrophic, and heterotrophic conditions utilizing different initial concentrations of glucose (5, 10, 15, 20, and 25 g L−1). Compared to the photoautotrophic condition (biomass yield: KNUA104, 0.35 ± 0.04 g/L/d; KNUA114, 0.40 ± 0.08 g/L/d; KNUA122, 0.38 ± 0.05 g/L/d) glucose was absent, and the biomass yield improved in the mixotrophic (glucose: 20 g L−1; biomass yield: KNUA104, 2.99 ± 0.10 g/L/d; KNUA114, 5.18 ± 0.81 g/L/d; KNUA122, 5.07 ± 0.22 g/L/d) and heterotrophic conditions (glucose: 20 g L−1; biomass yield: KNUA104, 1.72 ± 0.26 g/L/d; KNUA114, 4.26 ± 0.27 g/L/d; KNUA122, 4.32 ± 0.32 g/L/d). All strains under mixotrophic and heterotrophic conditions were optimally cultured when 15–20 g L−1 initial glucose was provided. Although bioresourse productivity improved under both mixotrophic and heterotrophic conditions where mixotrophic conditions were found to be optimal as the yields of lipid and pigment were also enhanced. Protein content was less affected by the presence of light or the concentration of glucose. Under mixotrophic conditions, the highest lipid content (glucose: 15 g L−1; lipid content: 68.80 ± 0.54%) was obtained with Chlorella vulgaris KNUA104, and enhanced pigment productivity of Chlorella sorokiniana KNUA114 and KNUA122 (additional pigment yield obtained with 15 g L−1 glucose: KNUA 114, 0.33 ± 0.01 g L−1; KNUA122, 0.21 ± 0.01 g L−1). Also, saturated fatty acid (SFA) content was enhanced in all strains (SFA: KNUA104, 29.76 ± 1.31%; KNUA114, 37.01 ± 0.98%; KNUA122, 33.37 ± 0.17%) under mixotrophic conditions. These results suggest that mixotrophic cultivation of Chlorella vulgaris and Chlorella sorokiniana could improve biomass yield and the raw material quality of biomass.

Author(s):  
Swati Dahiya ◽  
Raja Chowdhury ◽  
Wendong Tao ◽  
Pradeep Kumar

Hydrolysate prepared from water hyacinth biomass, containing a considerable amount of solubilised carbohydrate and nutrients, was utilised as a medium for the cultivation of two strains of Chlorella sorokiniana. These strains were isolated from an oxidation pond using two different media, i.e., BG-11 and Knop's media maintained at pH-9. Different light intensities, light-dark cycles, and various concentrations of external carbon sources (monosaccharides and inorganic carbon) were used to optimise the microalgal growth. It was observed that in the presence of organic carbon (glucose), biomass productivity increased significantly (~300 mgL-1day-1) as compared to that in the presence of only inorganic carbon (~100 mgL-1day-1). For the accumulation of stress products (lipids and carbohydrates), the microalgal strains were transferred to nutrient-amended media (N-amended and P-amended). The combined effects of glucose, inorganic carbon, and a 12h:12h light-dark cycle proved to be optimum for biomass productivity. For Chlorella sp. isolated from BG-11, maximum carbohydrate content (22%) was found in the P-amended medium, whereas high lipid content (17.3%) was estimated in the N-amended medium. However, for Chlorella sp. isolated from Knop's medium, both the lipid (17%) and carbohydrate accumulation (12.3%) were found maximum in the N- amended medium. Kinetic modelling of the lipid profile revealed that kinetic coefficients obtained for strain isolated from BG-11 media were statistically significant from each other.


2019 ◽  
Vol 10 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Mohammad H. Morowvat ◽  
Younes Ghasemi

Background: Nowadays, chlorophycean microalgae have attained a broad-spectrum attention as a potential candidate for biomass and bioenergy production. Despite their appreciated benefits, one of major problems is their low biomass and lipid productivity. Here we investigated the heterotrophic culture in shake flasks and stirred tank bioreactor to improve the lipid and biomass production in a naturally isolated strain of Chlorella vulgaris. Methods: A naturally isolated C. vulgaris strain was cultivated in BG-11 medium in shake flask and bioreactor. Its biochemical composition and growth kinetic parameters were investigated. Results: The biomass productivity was improved (3.68 fold) under heterotrophic culture compared to basal autotrophic culture condition in shake flask experiment. The total lipid content increased to 44% of total Dry Cell Weight (DCW) during heterotrophic growth after 21 days. Moreover, a great Fatty Acid Methyl Esters (FAME) yield was observed under heterotrophic cultivation. Total biomass and lipid content of microalgae in bioreactor experiment increased to 4.95 and 2.18 g L-1 respectively, during 5 days of the experiment compared to its basic autotrophic culture. Conclusion: The techno-economic aspects of exploiting C. vulgaris as a biodiesel feedstock werealso evaluated. The results imply that heterotrophic cultivation could compensate the low biomass productivity in microalgae for green energy production. Ever growing rates of established patents on application of various genetic and bioengineering-based methods have made it possible to achieve higher lipid contents with reduced total costs for microalgal biodiesel production as well.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1411
Author(s):  
Swati Dahiya ◽  
Raja Chowdhury ◽  
Wendong Tao ◽  
Pradeep Kumar

Hydrolysate prepared from the chemical hydrolysis of water hyacinth biomass contains a high amount of solubilised carbohydrate and nutrients. This hydrolysate was utilised as a medium for the cultivation of two strains of Chlorella sorokiniana, isolated from a municipal wastewater treatment plant using two different media, i.e., BG-11 and Knop’s medium. Different light intensities, light–dark cycles, and various concentrations of external carbon sources (monosaccharides and inorganic carbon) were used to optimise the microalgal growth. For the accumulation of lipids and carbohydrates, the microalgal strains were transferred to nutrient amended medium (N-amended and P-amended). It was observed that the combined effect of glucose, inorganic carbon, and a 12:12 h light–dark cycle proved to be the optimum parameters for high biomass productivity (~200 mg/L/day). For Chlorella sorokiniana 1 (isolated from BG-11 medium), the maximum carbohydrate content (22%) was found in P-amended medium (N = 0 mg/L, P: 3 mg/L), whereas, high lipid content (17.3%) was recorded in N-amended medium (N = 5 mg/L, P = 0 mg/L). However, for Chlorella sorokiniana 2 (isolated from the Knop’s medium), both lipid (17%) and carbohydrate accumulation (12.3%) were found to be maximum in the N-amended medium. Chlorella sorokiniana 2 showed a high saturated lipid accumulation compared to other strains. Kinetic modelling of the lipid profile revealed that the production rate of fatty acids and their various constituents were species dependent under identical conditions.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 463 ◽  
Author(s):  
Ali Nawaz Kumbhar ◽  
Meilin He ◽  
Abdul Razzaque Rajper ◽  
Khalil Ahmed Memon ◽  
Muhammad Rizwan ◽  
...  

The decline in fossil fuel reserves has forced researchers to seek out alternatives to fossil fuels. Microalgae are considered to be a promising feedstock for sustainable biofuel production. Previous studies have shown that urea is an important nitrogen source for cell growth and the lipid production of microalgae. The present study investigated the effect of different concentrations of urea combined with kelp waste extract on the biomass and lipid content of Chlorella sorokiniana. The results revealed that the highest cell density, 20.36 × 107 cells−1, and maximal dry biomass, 1.70 g/L, were achieved in the presence of 0.5 g/L of urea combined with 8% kelp waste extract. Similarly, the maximum chlorophyll a, b and beta carotenoid were 10.36 mg/L, 7.05, and 3.01 mg/L, respectively. The highest quantity of carbohydrate content, 290.51 µg/mL, was achieved in the presence of 0.2 g/L of urea and 8% kelp waste extract. The highest fluorescence intensity, 40.05 × 107 cells−1, and maximum total lipid content (30%) were achieved in the presence of 0.1 g/L of urea and 8% kelp waste extract. The current study suggests that the combination of urea and kelp waste extract is the best strategy to enhance the biomass and lipid content in Chlorella sorokiniana.


2013 ◽  
Vol 860-863 ◽  
pp. 920-927
Author(s):  
Rao Qiong Che ◽  
Qiu Mei Wang ◽  
Li Huang ◽  
Peng Zhao ◽  
Xu Ya Yu

The effects of additional Mg2+ on the growth and lipid accumulation of the microalgae Monoraphidium sp. FXY-10 under mixotrophic conditions were investigated. 100 μmol Mg2+ were added to the growth media during the stationary growth phase. Compared with the control (35.25%), the highest lipid content reached up to 37.13% biomass after Mg2+ was added to the media. Moreover, the higher lipid productivity of 79.83 mg L1 d1 and the biomass productivity of 214.65 mg L1 d1 were attained in the Mg2+-supplemented cultures, as compared with cultures without supplemented (72.95 mg L1 d1 and 179.28 mg L1 d1, respectively). The use of Mg2+ supplements were proven to stimulate cell regrowth, prolong the stationary phase, and promote lipid accumulation in Monoraphidium sp. FXY-10.


2013 ◽  
Vol 779-780 ◽  
pp. 1509-1513
Author(s):  
Jing Han Wang ◽  
Hai Zhen Yang ◽  
Feng Wang

Biodiesel from microalgae provides a promising alternative for biofuel production. Microalgal biodiesel can be produced under three major cultivation modes, namely, photoautotrophic, heterotrophic, and mixotrophic cultivation. Studies of biodiesel production from microalgae have been reported mostly focusing on photoautotrophic cultivation, mixotrophic cultivation has rarely been researched. This paper compared the biomass productivity, lipid content, and lipid productivity ofChlorella sorokinianaunder photoautotrophic, heterotrophic, and mixotrophic cultivation. Glucose was adopted as organic carbon source at five concentrations (0.1, 0.5, 1.0, 2.0, 5.0% glucose w/v). Results displayed that microalgal growth was significantly improved in glucose supplied cultures. Synergetic effect of photoautotrophy and heterotrophy existed in mixotrophic cultivation except for 5.0% culture. Highest biomass productivity of 1.178 g·L-1·d-1and highest lipid productivity of 582 mg·L-1·d-1was observed under mixotrophic cultivation with 2.0% (w/v) glucose addition. Lipid content ofC. sorokinianawas mostly higher in stationary phase than in exponential phase. Highest lipid content of 49.37% was observed in 2.0% mixotrophic culture, followed by 47.09% in 2.0% heterotrophic culture.


2019 ◽  
Vol 797 ◽  
pp. 365-372
Author(s):  
Nor Azalina Zakariah ◽  
Norazah Abd Rahman ◽  
Noor Amelina Abdul Rahim

Effect of various nitrate replete concentrations have been investigated in terms of biomass yield, cell and nitrate concentrations. Media used in this study is Bold’s basal medium which contains nitrate that act as nutrient. Its concentrations have been varied for obtaining the high biomass yield. The nitrate concentrations used were 30 mg nitrate/L, 35 mg nitrate/L, 40 mg nitrate/L, 45 mg nitrate/L and 50 mg nitrate/L) with 30 mg nitrate/L as a control. Microalgae Chlorella sp. is cultured and aerated in a Schott bottle with presents of light. Results showed that the best concentration to obtain highest biomass yield was 45 mg nitrate/L. It also gave the highest optical density reading at day 9 with 2.100 ± 0.070 and showed the highest cell concentration with 703 ± 29 x 106 cells/mL. Dry algae produced by this concentration after the end of the cycle was 291 ± 9 mg which was the highest compared to other concentration. It is suggested that as the biomass yield is increased by using 45 mg nitrate/L concentration, other methods to increase lipid content can be paired with nitrate replete method and can be further studied in the future.


2018 ◽  
Vol 197 ◽  
pp. 13019
Author(s):  
Amani Karima ◽  
Mawar DS Silalahi ◽  
Astri Rinanti

This research was aimed to obtain algae biofuels as an alternative energy which comes from tropical microalgae biomass Chlorella sorokiniana and Closterium sp. The cultivation was performed at a controlled room in batch culture photobioreactor, temperature 27°C, pH 6, aeration with air flow rate of 150 mL/sec, and light intensity at 2400 lux. These nutrient sources used artificial PHM with KNO3 variation as a nitrogen source of 0 grams; 0.25 grams; 0.5 grams; 1 gram. The research involved microalgae lipid extraction with Blight & Dyer method and also carried out support of alcohol, chloroform and distilled water (1:1:1) with optimum temperature 30oC. Oil yields that obtained were analyzed with Gas Chromatography Mass Spectrometry (GC-MS) method, dry weight with a gravimetric method and cell density with spectrophotometry. The result showed that the reduction of KNO3 materials (0,25 gr) can produce biomass and highest total lipid content at 0,41 g/L and 20,31 %/(w/w). The results showed that KNO3 decreased the amount of biomass which was not significant but the total lipid content of microalgae was increased. Lipid content and fatty acids extracted from Blight & Dyer showed oil content that could potentially be the raw material of biodiesel.


Sign in / Sign up

Export Citation Format

Share Document