Potential of Mixotrophic Cultivation of Chlorella sorokiniana for Biodiesel Production

2013 ◽  
Vol 779-780 ◽  
pp. 1509-1513
Author(s):  
Jing Han Wang ◽  
Hai Zhen Yang ◽  
Feng Wang

Biodiesel from microalgae provides a promising alternative for biofuel production. Microalgal biodiesel can be produced under three major cultivation modes, namely, photoautotrophic, heterotrophic, and mixotrophic cultivation. Studies of biodiesel production from microalgae have been reported mostly focusing on photoautotrophic cultivation, mixotrophic cultivation has rarely been researched. This paper compared the biomass productivity, lipid content, and lipid productivity ofChlorella sorokinianaunder photoautotrophic, heterotrophic, and mixotrophic cultivation. Glucose was adopted as organic carbon source at five concentrations (0.1, 0.5, 1.0, 2.0, 5.0% glucose w/v). Results displayed that microalgal growth was significantly improved in glucose supplied cultures. Synergetic effect of photoautotrophy and heterotrophy existed in mixotrophic cultivation except for 5.0% culture. Highest biomass productivity of 1.178 g·L-1·d-1and highest lipid productivity of 582 mg·L-1·d-1was observed under mixotrophic cultivation with 2.0% (w/v) glucose addition. Lipid content ofC. sorokinianawas mostly higher in stationary phase than in exponential phase. Highest lipid content of 49.37% was observed in 2.0% mixotrophic culture, followed by 47.09% in 2.0% heterotrophic culture.

2013 ◽  
Vol 777 ◽  
pp. 268-273 ◽  
Author(s):  
Jing Han Wang ◽  
Hai Zhen Yang ◽  
Feng Wang

Microalgae are a promising feedstock for biodiesel production. Microalgal biodiesel can be obtained under three major cultivation modes, namely, photoautotrophic, heterotrophic, and mixotrophic cultivation. Reported studies of microalgal biodiesel production are mainly based on photoautotrophic cultivation, mixotrophic cultivation has rarely been researched. This paper compared the biomass productivity, lipid content, and lipid productivity of Scenedesmus sp. under photoautotrophic, heterotrophic, and mixotrophic cultivation. Glucose was added as organic carbon source at five concentrations (0.1, 0.5, 1.0, 2.0, 5.0% glucose w/v). Results displayed that microalgal growth was significantly improved in glucose supplied cultures. Synergetic effect of photoautotrophy and heterotrophy existed in all mixotrophic cultures. Highest biomass productivity of 1.307 g·L-1·d-1 and highest lipid productivity of 316 mg·L-1·d-1 was respectively observed under mixotrophic cultivation with 5.0% and 1.0% (w/v) glucose addition. Lipid content of Scenedesmus sp. under mixotrophic cultivation was mostly higher in stationary phase than in exponential phase. Highest lipid content of 27.73% was observed in 1.0% mixotrophic culture, followed by 24.66% in 1.0% heterotrophic culture.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 463 ◽  
Author(s):  
Ali Nawaz Kumbhar ◽  
Meilin He ◽  
Abdul Razzaque Rajper ◽  
Khalil Ahmed Memon ◽  
Muhammad Rizwan ◽  
...  

The decline in fossil fuel reserves has forced researchers to seek out alternatives to fossil fuels. Microalgae are considered to be a promising feedstock for sustainable biofuel production. Previous studies have shown that urea is an important nitrogen source for cell growth and the lipid production of microalgae. The present study investigated the effect of different concentrations of urea combined with kelp waste extract on the biomass and lipid content of Chlorella sorokiniana. The results revealed that the highest cell density, 20.36 × 107 cells−1, and maximal dry biomass, 1.70 g/L, were achieved in the presence of 0.5 g/L of urea combined with 8% kelp waste extract. Similarly, the maximum chlorophyll a, b and beta carotenoid were 10.36 mg/L, 7.05, and 3.01 mg/L, respectively. The highest quantity of carbohydrate content, 290.51 µg/mL, was achieved in the presence of 0.2 g/L of urea and 8% kelp waste extract. The highest fluorescence intensity, 40.05 × 107 cells−1, and maximum total lipid content (30%) were achieved in the presence of 0.1 g/L of urea and 8% kelp waste extract. The current study suggests that the combination of urea and kelp waste extract is the best strategy to enhance the biomass and lipid content in Chlorella sorokiniana.


2017 ◽  
Author(s):  
◽  
Poonam Singh

Microalgae are considered to be a potential feedstock for biodiesel production. However, the main concern with regard to the large scale microalgal biodiesel production process is its competence and economic viability. The commercial realization of microalgal biodiesel production requires substantial impetus towards development of efficient strategies to improve lipid yields upstream. Nitrogen (N) and phosphorus (P) stress during cultivation are the widely used lipid accumulation strategies for microalgae. However, these individual nutrient stress strategies are associated with compromised biomass productivity which hampers overall lipid productivity. Lipid enhancement strategies based on light, temperature and CO2 are associated with technological barriers for scale up and incur additional cost. Thus, the main aim of this study was to develop an integrated, easily applicable and scalable lipid enhancement strategy based on nutrients and metals such as N, P, iron (Fe), magnesium (Mg), calcium (Ca) and EDTA stress for selected indigenous microalgal strains. The effect of metal concentrations individually and in combination on microalgal lipids and biomass production is a scarcely exploited area. In this study, a novel approach involving individual as well as combined metals and EDTA stress under N and P limited conditions for lipid enhancement in microalgae was investigated. Microalgal growth physiology, photosynthetic performance, biochemical composition (lipid, carbohydrate and protein) and expression of selected key genes involved in photosynthesis (rbcL) and fatty acid biosynthesis (accD) were studied both under selected individual and combined stress conditions. Out of seven microalgal isolates obtained during the initial isolation and screening process, two strains were selected for lipid enhancement study based on their growth rates, biomass yields, lipid content and lipid productivities. The strains were later identified as Acutodesmus obliquus and Chlorella sorokiniana based on both morphological characteristics and phylogenetical analysis. The selected strains were thereafter subjected to different cultivation conditions involving varying metal, EDTA and nutrient stress conditions. A significant increase in lipid productivity was observed when the concentrations of Fe, Mg and EDTA were increased and Ca was decreased to degree in the N and P stress BG11 medium. For A. obliquus, a highest lipid productivity of 80.23 mgL-1d-1 was achieved with the developed strategy under limited N (750 mg L-1) condition which was 2.18 fold higher than BG11 medium and 1.89 fold higher than N limited condition alone. Similarly, for C. sorokiniana, highest lipid productivity of 77.03 mgL-1d-1 was achieved with the developed strategy under limited N (500 mgL-1) and P (10 mgL-1) which was 2.67 fold higher than BG11 medium and 2.35 fold higher than N and P limited condition alone. For both the microalgal strains, Fe was the most significant trace metal affecting their lipid productivity. These above observations were further confirmed through photosynthetic performance analysis and gene expression studies. At mid log phase, 6.38 and 5.15 fold increases in the expression levels of rbcL gene were observed under combined stress (OCMS+OE) as compared to the control (BG11) condition in A. obliquus and C. sorokiniana respectively. This also resulted in an increased expression level of accD gene involved in lipid biosynthesis to 10.25 fold and 9.79 fold in A. obliquus and C. sorokiniana respectively at late log phase. The results from expression studies of rbcL and accD genes were in compliance with biomass yields, photosynthetic performance, protein yield and lipid productivities for both the strains under different cultivating conditions. The universal applicability of the above strategy was confirmed by applying it to five other microalgae strains isolated in this study which resulted in considerable increase in their overall lipid productivity under optimized conditions. Attempts were made to scale up the lab scale study to open circular pond (3000L) cultivation for A. obliquus. Results showed a 2.08 fold increase in lipid productivity under optimized conditions compared to the control, which emphasizes the scalability of the developed strategy even under uncontrolled conditions. In conclusion, the developed combined metal and EDTA stress strategy not only assisted in alleviating the biomass productivity but also enhanced the lipid accumulation which resulted in overall increased lipid productivity under N and P limited condition. Furthermore, the improved carbohydrate and protein productivities observed with the developed lipid enhancement strategy make it suitable for biorefinery approach with multiple products. An improvement in lipid profile and high biodiesel conversion were also observed with this universally applicable and scalable lipid enhancement strategy confirming their potential applicability during large scale cultivation for biodiesel production.


BioResources ◽  
2011 ◽  
Vol 7 (1) ◽  
pp. 686-695
Author(s):  
Xun Yang ◽  
Pinghuai Liu ◽  
Zongdi Hao ◽  
Jie Shi ◽  
Sen Zhang

Fifty-three algal cultures were isolated from freshwater lakes in Hainan, China. Four microalgal isolates were selected because they could be successfully cultivated at high density and demostrated a strong fluorescence after being stained with nile red. These cultures were identified as strains of Chlorella sp. C11, Chlamydomonas reinhardtii C22, Monoraphidium dybowskii C29, and Chlorella sp. HK12 through microscopic and 18S rDNA analysis. Under similar conditions, the lipid productivity of Chlorella sp. C11, Chla. reinhardtii C22, M. dybowskii C29 , and Chlorella sp. HK12 were 1.88, 2.79, 2.00, and 3.25 g L-1, respectively. Chla. reinhardtii C22 yielded a higher lipid content (51%), with a lower biomass concentration (5.47 g dwt L-1). Chlorella sp. HK12 reached a growth rate of 0.88 day-1 at OD540nm and yielded a biomass concentration of 7.56 g dwt L-1, with a high lipid content of 43%. Gas chromatography/ mass spectrometry analysis indicated that lipid fraction mainly comprises hydrocarbons including palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acids. Our results suggest that Chlorella sp. HK12 is a promising species for biodiesel production, because of its high lipid productivity and a relatively high content of oleic acid.


2021 ◽  
Author(s):  
Hanaa Morsi ◽  
Hamed Eladel ◽  
Ayah Maher

Abstract The present study focused on the feasibility of using municipal wastewater (WW) as culture medium for cultivation of microalgae. The study aimed to assess the efficiency of microalgae in nutrients removing capacity from wastewater and its biomass and lipid productivity for using as biodiesel feedstock. Based on that, the green microalga Asterarcys quadricellulare was isolated and grown for 24 days in Bold’s Basal Medium as a control and at different concentration of secondary treated municipal wastewater (WW) diluted with distilled water (25%, 50%, 75% and 100%WW). Results of 75%WW treatment recorded 96.6%, 98.4%, and 89.9% removal efficiency for, nitrate, ammonia and total phosphorus, respectively. Also, it revealed high biomass productivity and biomass content, where it recorded 69.0 mgL-1 day-1, and 1.44 g/L, respectively. Likewise, high lipid productivity 17.2 mg L−1 day−1 and 360.6 mg/L lipid content. Consequently, Asterarcys quadricellulare fatty acids profile estimation revealed an increase in Oleic, Palmitic and Linoleic acids levels. Most properties of biodiesel derived from the studied microalga meet with values established by the ASTM D6751 and EN 14214 biodiesel standards. According to this analysis, A. quadricellulare microalga could be used for wastewater bioremediation and biomass production with a suitable content of lipids proper as biodiesel feedstock. The predictive biodiesel properties pointed that it has a good quality compared with international standards.


2020 ◽  
Vol 48 (3) ◽  
pp. 1439-1457
Author(s):  
Hanaa H. ABD EL BAKY ◽  
Gamal S. EL BAROTY

The biodiesel can be produced from diverse microalgae lipids as alternative and renewable fuel. Thus, the aim of this study was to optimize the Chlamydomonas reinhardtii promising species as biodiesel feedstock for large-scale cultivation in Egypt. To understand some of the triggers required for the metabolic pathway switch to lipid accumulation, the effect of carbon sources and the three elements availability (N, P, S) in C. reinhardtii growth medium was determined. A local microalgae C. reinhardtii was cultured in modified Sueoka medium containing various concentrations of CO2 and bicarbonate (NaHCO3) (in 2-liter flasks) as a carbon source. The optimal source in term biomass, high lipid productivity (10.3 mgL-1d-1) and a higher lipid content (22.76%) were obtained in 6% CO2 culture. Then, the availability of N, P, S (various concentrations of N, P and S) nutrients elements was added to 6% CO2 culture, for produce a highest lipid content and lipid productivity. As expected, under low availability N-1.78 mM; P-0.14mM and S-0.10 mM mediums, C. reinhardtii showed a high accumulation lipid content. Therefore, to improve the economic feasibility of microalgae biofuels production, its concentrations were selected to combine (N+P+S) in order to cultivation of C. reinhardtii in a multi-tubular photobioreactor (400 liter) to produce high lipid contents. Under limited condition, the biomass dry weight, biomass productivity, lipid content and lipid productivity were found to be 3.11 (gL-1), 0.15±0.012 (g-1L-1d-1), 22.76% (w/w %) and 1.9± 0.35 (mg-1L-1d-1), respectively. The extracted lipid was found to have physical and chemical properties similar that plant oils using for biodiesel production. The FAME profiling of prepared biodiesel shows the presence of considerable amount of 36.97% saturated fatty acids (palmitic acid and stearic acid, together) with 27.33% unsaturated (oleic acid and linoleic acid) fatty acids. The FAME had a low iodine value and high CN, which meet with the appropriate of biodiesel standards (EN 14214 and ASTM D6751). Thus, C. reinhardtii appears to be more feasible for high quality biodiesel production.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2660 ◽  
Author(s):  
Muhammad Maqsood Alam ◽  
Abdul Samad Mumtaz ◽  
Megan Russell ◽  
Melanie Grogger ◽  
Don Veverka ◽  
...  

Production of microalgae as feedstock for biofuels must deal with a number of challenges including constraints imposed by local conditions. One solution is to use indigenous strains adapted to local climatic conditions. The present report describes the isolation, identification, and characterization of 32 microalgal strains from different ecological habitats: desert freshwater channels, northern region, and saline regions of Pakistan. The effects of temperature on algal growth rates, biomass productivity, and lipid content were determined through growth at 12, 20, and 35 °C for 15 days under 2% CO2 Responses to temperature varied among species with 20 °C being the optimum temperature in general, although, exceptionally, the best overall growth rate was found for strain S29 (0.311 d−1) at 12 °C. In some cases high biomass productivity was observed at 35 °C, and, depending upon the strain, the maximum lipid content was obtained at different temperatures, including 12 °C. Fatty acid methyl ester (FAME) analysis showed that the major fatty acids present were palmitic, stearic, oleic, linoleic, and linolenic. Oleic acid (C18:1) was the predominant fatty acid, with the specific FAME profile varying with strain. Thus, there is a rich diversity of microalgal strains native to Pakistan, some of which, characterized here, could be suitable for biodiesel production or other biotechnological applications.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Indu Ambat ◽  
Sabina Bec ◽  
Elina Peltomaa ◽  
Varsha Srivastava ◽  
Anne Ojala ◽  
...  

AbstractThe combination of wastewater treatment and biodiesel production using algal cultivation was studied in the present work. The two main goals of the work were achieved by the cultivation of freshwater microalgae such as Chlamydomonas sp., Scenedesmus ecornis, and Scenedesmus communis in two different dilutions of fertilizer plant wastewater (FWWD1 and FWWD2) collected from Yara Suomi Oy, Finland. The growth pattern of different algal species in FWWD1 and FWWD2 was observed. The effect of pH on biomass concentration, lipid content, biomass productivity, and lipid productivity by all three algal species in FWWD1 and FWWD2 were monitored. The maximum biomass concentration and productivity were observed in FWWD1 at pH7.5 for Chlamydomonas sp. and at pH 8.5 for S. ecornis and S. communis. The maximum lipid content was detected in Chlamydomonas sp at pH5.5, followed by S. ecornis and then S. communis at pH 7.5 in FWWD2 obtained after co-solvent extraction method. The most significant removal percentage of COD by all algal species were observed in FWWD1, whereas the highest removal percentage of TN and TP were detected in FWWD2, respectively. The fatty acid methyl ester (FAME) characterization of each algal species in FWWD1 and FWWD2 at their optimum pH was investigated to determine the quality of obtained biodiesel.


Sign in / Sign up

Export Citation Format

Share Document