scholarly journals Vascular Notch Signaling in Stress Hematopoiesis

Author(s):  
Can Huang ◽  
Dawei Yang ◽  
George W. Ye ◽  
Charles A. Powell ◽  
Peipei Guo

Canonical Notch signaling is one of the most conserved signaling cascades. It regulates cell proliferation, cell differentiation, and cell fate maintenance in a variety of biological systems during development and cancer (Fortini, 2009; Kopan and Ilagan, 2009; Andersson et al., 2011; Ntziachristos et al., 2014). For the hematopoietic system, during embryonic development, Notch1 is essential for the emergence of hematopoietic stem cells (HSCs) at the aorta-gornado-mesonephro regions of the dorsal aorta. At adult stage, Notch receptors and Notch targets are expressed at different levels in diverse hematopoietic cell types and influence lineage choices. For example, Notch specifies T cell lineage over B cells. However, there has been a long-lasting debate on whether Notch signaling is required for the maintenance of adult HSCs, utilizing transgenic animals inactivating different components of the Notch signaling pathway in HSCs or niche cells. The aims of the current mini-review are to summarize the evidence that disapproves or supports such hypothesis and point at imperative questions waiting to be addressed; hence, some of the seemingly contradictory findings could be reconciled. We need to better delineate the Notch signaling events using biochemical assays to identify direct Notch targets within HSCs or niche cells in specific biological context. More importantly, we call for more elaborate studies that pertain to whether niche cell type (vascular endothelial cells or other stromal cell)-specific Notch ligands regulate the differentiation of T cells in solid tumors during the progression of T-lymphoblastic lymphoma (T-ALL) or chronic myelomonocytic leukemia (CMML). We believe that the investigation of vascular endothelial cells' or other stromal cell types' interaction with hematopoietic cells during homeostasis and stress can offer insights toward specific and effective Notch-related therapeutics.

Author(s):  
Abdellah Akil ◽  
Ana K. Gutiérrez-García ◽  
Rachael Guenter ◽  
J. Bart Rose ◽  
Adam W. Beck ◽  
...  

The Notch signaling pathway plays an essential role in a wide variety of biological processes including cell fate determination of vascular endothelial cells and the regulation of arterial differentiation and angiogenesis. The Notch pathway is also an essential regulator of tumor growth and survival by functioning as either an oncogene or a tumor suppressor in a context-dependent manner. Crosstalk between the Notch and other signaling pathways is also pivotal in tumor progression by promoting cancer cell growth, migration, invasion, metastasis, tumor angiogenesis, and the expansion of cancer stem cells (CSCs). In this review, we provide an overview and update of Notch signaling in endothelial cell fate determination and functioning, angiogenesis, and tumor progression, particularly in the development of CSCs and therapeutic resistance. We further summarize recent studies on how endothelial signaling crosstalk with the Notch pathway contributes to tumor angiogenesis and the development of CSCs, thereby providing insights into vascular biology within the tumor microenvironment and tumor progression.


2015 ◽  
Vol 88 (3) ◽  
pp. 247-252 ◽  
Author(s):  
Mihaela Elena Marina ◽  
Iulia Ioana Roman ◽  
Anne-Marie Constantin ◽  
Carmen Mihaela Mihu ◽  
Alexandru Dumitru Tătaru

Vascular endothelial growth factor (VEGF) is a key growth factor, regulating the neovascularization, during embryogenesis, skeletal growth, reproductive functions and pathological processes. The VEGF receptors (VEGFR) are present in endothelial cells and other cell types, such as vascular smooth muscle cells, hematopoietic stem cells, monocytes, neurons, macrophages, and platelets.Angiogenesis is initiated by the activation of vascular endothelial cells through several factors. The excess dermal vascularity and VEGF production are markers of psoriasis.The pathological role of VEGF/VEGFR signaling during the psoriasis onset and evolution makes it a promising target for the treatment of psoriasis. Antibodies and other types of molecules targeting the VEGF pathway are currently evaluated in arresting the evolution of psoriasis.


2019 ◽  
Author(s):  
Isao Kobayashi ◽  
Jingjing Kobayashi-Sun ◽  
Yuto Hirakawa ◽  
Madoka Ouchi ◽  
Koyuki Yasuda ◽  
...  

AbstractIn order to efficiently derive hematopoietic stem cells (HSCs) from pluripotent precursors, it is crucial to understand how mesodermal cells acquire hematopoietic or endothelial identity due to their close developmental connection. Although Npas4 has been recently identified as a conserved master regulator of hemato-vascular development, the molecular mechanisms underlying the cell fate divergence between hematopoietic and vascular endothelial cells are still unclear. Here, we show in zebrafish that the divergence of hematopoietic and vascular endothelial cells in mesodermal cells is regulated by Junctional adhesion molecule 3b (Jam3b) via two independent signaling pathways. Mutation of jam3b led to the reduction of npas4l expression in the posterior lateral plate mesoderm and defect of both hematopoietic and vascular development. Mechanistically, we uncover that Jam3b promotes endothelial specification by regulating npas4l expression through the repression of the Rap1a-Erk signaling cascade. Jam3b subsequently promotes hematopoietic development including HSCs by regulating lrrc15 expression in endothelial precursors through the activation of an integrin-dependent signaling cascade. Our data provide insight into the divergent mechanisms for instructing hematopoietic or vascular fates from mesodermal cells.


Angiogenesis ◽  
2021 ◽  
Author(s):  
Giovanni Canu ◽  
Christiana Ruhrberg

AbstractHematopoiesis in vertebrate embryos occurs in temporally and spatially overlapping waves in close proximity to blood vascular endothelial cells. Initially, yolk sac hematopoiesis produces primitive erythrocytes, megakaryocytes, and macrophages. Thereafter, sequential waves of definitive hematopoiesis arise from yolk sac and intraembryonic hemogenic endothelia through an endothelial-to-hematopoietic transition (EHT). During EHT, the endothelial and hematopoietic transcriptional programs are tightly co-regulated to orchestrate a shift in cell identity. In the yolk sac, EHT generates erythro-myeloid progenitors, which upon migration to the liver differentiate into fetal blood cells, including erythrocytes and tissue-resident macrophages. In the dorsal aorta, EHT produces hematopoietic stem cells, which engraft the fetal liver and then the bone marrow to sustain adult hematopoiesis. Recent studies have defined the relationship between the developing vascular and hematopoietic systems in animal models, including molecular mechanisms that drive the hemato-endothelial transcription program for EHT. Moreover, human pluripotent stem cells have enabled modeling of fetal human hematopoiesis and have begun to generate cell types of clinical interest for regenerative medicine.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1230 ◽  
Author(s):  
Heo ◽  
Kim ◽  
Woo ◽  
Kim ◽  
Choi ◽  
...  

Stromal cell-derived factor 1 (SDF-1) and its main receptor, CXC chemokine receptor 4 (CXCR4), play a critical role in endothelial cell function regulation during cardiogenesis, angiogenesis, and reendothelialization after injury. The expression of CXCR4 and SDF-1 in brain endothelial cells decreases due to ionizing radiation treatment and aging. SDF-1 protein treatment in the senescent and radiation-damaged cells reduced several senescence phenotypes, such as decreased cell proliferation, upregulated p53 and p21 expression, and increased senescence-associated beta-galactosidase (SA-β-gal) activity, through CXCR4-dependent signaling. By inhibiting extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription protein 3 (STAT3), we confirmed that activation of both is important in recovery by SDF-1-related mechanisms. A CXCR4 agonist, ATI2341, protected brain endothelial cells from radiation-induced damage. In irradiation-damaged tissue, ATI2341 treatment inhibited cell death in the villi of the small intestine and decreased SA-β-gal activity in arterial tissue. An ischemic injury experiment revealed no decrease in blood flow by irradiation in ATI2341-administrated mice. ATI2341 treatment specifically affected CXCR4 action in mouse brain vessels and partially restored normal cognitive ability in irradiated mice. These results demonstrate that SDF-1 and ATI2341 may offer potential therapeutic approaches to recover tissues damaged during chemotherapy or radiotherapy, particularly by protecting vascular endothelial cells.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Meijun Pang ◽  
Linlu Bai ◽  
Weijian Zong ◽  
Xu Wang ◽  
Ye Bu ◽  
...  

Abstract It remains challenging to construct a complete cell lineage map of the origin of vascular endothelial cells in any vertebrate embryo. Here, we report the application of in toto light-sheet fluorescence imaging of embryos to trace the origin of vascular endothelial cells (ECs) at single-cell resolution in zebrafish. We first adapted a previously reported method to embryo mounting and light-sheet imaging, created an alignment, fusion, and extraction all-in-one software (AFEIO) for processing big data, and performed quantitative analysis of cell lineage relationships using commercially available Imaris software. Our data revealed that vascular ECs originated from broad regions of the gastrula along the dorsal–ventral and anterior–posterior axes, of which the dorsal–anterior cells contributed to cerebral ECs, the dorsal–lateral cells to anterior trunk ECs, and the ventral–lateral cells to posterior trunk and tail ECs. Therefore, this work, to our knowledge, charts the first comprehensive map of the gastrula origin of vascular ECs in zebrafish, and has potential applications for studying the origin of any embryonic organs in zebrafish and other model organisms.


Blood ◽  
2010 ◽  
Vol 116 (13) ◽  
pp. 2395-2401 ◽  
Author(s):  
Jan Kazenwadel ◽  
Michael Z. Michael ◽  
Natasha L. Harvey

Abstract The specification of arterial, venous, and lymphatic endothelial cell fate is critical during vascular development. Although the homeobox transcription factor, Prox1, is crucial for the specification and maintenance of lymphatic endothelial cell identity, little is known regarding the mechanisms that regulate Prox1 expression. Here we demonstrate that miR-181a binds the 3′ untranslated region of Prox1, resulting in translational inhibition and transcript degradation. Increased miR-181a activity in primary embryonic lymphatic endothelial cells resulted in substantially reduced levels of Prox1 mRNA and protein and reprogramming of lymphatic endothelial cells toward a blood vascular phenotype. Conversely, treatment of primary embryonic blood vascular endothelial cells with miR-181a antagomir resulted in increased Prox1 mRNA levels. miR-181a expression is significantly higher in embryonic blood vascular endothelial cells compared with lymphatic endothelial cells, suggesting that miR-181 activity could be an important mechanism by which Prox1 expression is silenced in the blood vasculature during development. Our work is the first example of a microRNA that targets Prox1 and has implications for the control of Prox1 expression during vascular development and neo-lymphangiogenesis.


2020 ◽  
Author(s):  
Meijun Pang ◽  
Linlu Bai ◽  
Weijian Zong ◽  
Xu Wang ◽  
Ye Bu ◽  
...  

AbstractIt remains challenging to construct a complete cell lineage map of the origin of vascular endothelial cells in any vertebrate embryo. Here, we report the application of in toto light-sheet fluorescence imaging of embryos to tracing the origin of vascular endothelial cells (ECs) at single-cell resolution in zebrafish. We first adapted a previously-reported method to mount embryos and light-sheet imaging, created an alignment, fusion, and extraction all-in-one software (AFEIO) for processing big data, and performed quantitative analysis of cell lineage relationships using commercially-available Imaris software. Our data revealed that vascular ECs originated from broad regions of the gastrula along the dorsal-ventral and anterior-posterior axes, of which the dorsal-anterior cells contributed to cerebral ECs, the dorsal-lateral cells to anterior trunk ECs, and the ventral-lateral cells to posterior trunk and tail ECs. Therefore, this work, to our knowledge, charts the first comprehensive map of the gastrula origin of vascular ECs in zebrafish, and has potential applications for studying the origin of any embryonic organs in zebrafish and other model organisms.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wenyi Wu ◽  
Huizuo Xu ◽  
Zhishang Meng ◽  
Jianxi Zhu ◽  
Siqi Xiong ◽  
...  

Proliferative diabetic retinopathy (PDR), characterized mainly with abnormal epiretinal angiogenesis forming fibrovascular membranes (FVMs), threatens vision of people with diabetes; FVMs consist of extracellular matrix and a variety of cell types including vascular endothelial cells. Axl, one of receptor tyrosine kinases, can be activated indirectly by vascular endothelial growth factor-A (VEGF-A) via an intracellular route for promoting angiogenesis. In this study, we revealed that growth arrest-specific protein 6 (Gas6), a specific ligand of Axl, was elevated in vitreous from patients with PDR and that Axl was activated in FVMs from patients with PDR. In addition, we demonstrated that in cultured human retinal microvascular endothelial cells (HRECs), Axl inhibition via suppression of Axl expression with Clustered Regularly Interspaced Short Palindromic Repeats/ CRISPR-associated protein 9 or through inactivation with its specific inhibitor R428 blocked PDR vitreous-induced Akt activation and proliferation of HRECs. Furthermore, PDR vitreous-heightened migration and tube formation of HRECs were also blunted by restraining Axl. These results indicate that in the pathogenesis of PDR, Axl can be activated by Gas6 binding directly and by VEGF-A via an intracellular route indirectly, suggesting that Axl plays a pivotal role in the development of PDR and that Axl inhibition shows a bright promise for PDR therapy.


Sign in / Sign up

Export Citation Format

Share Document