scholarly journals Prostate-Specific Membrane Antigen (PSMA) Promotes Angiogenesis of Glioblastoma Through Interacting With ITGB4 and Regulating NF-κB Signaling Pathway

Author(s):  
Yang Gao ◽  
Hui Zheng ◽  
Liangdong Li ◽  
Mingtao Feng ◽  
Xin Chen ◽  
...  

BackgroundGlioblastoma multiforme (GBM) is the most common primary malignant tumor in the central nervous system (CNS), causing the extremely poor prognosis. Combining the role of angiogenesis in tumor progression and the role of prostate-specific membrane antigen (PSMA) in angiogenesis, this study aims to explore the functions of PSMA in GBM.MethodsClinical GBM specimens were collected from 60 patients who accepted surgical treatment in Fudan University Shanghai Cancer Center between January 2018 and June 2019. Immunohistochemical staining was used to detect PSMA and CD31 expression in GBM tissues. Prognostic significance of PSMA was evaluated by bioinformatics. Human umbilical vein endothelial cells (HUVECs) transfected with PSMA overexpression plasmids or cultured with conditioned medium collected based on GBM cells, were used for CCK8, Transwell and tube formation assays. High-throughput sequencing and immunoprecipitation were used to explore the underlying mechanism. Furthermore, the in vivo experiment had been also conducted.ResultsWe demonstrated that PSMA was abundantly expressed in endothelium of vessels of GBM tissues but not in vessels of normal tissues, which was significantly correlated with poor prognosis. Overexpression of PSMA could promotes proliferation, invasion and tube formation ability of human umbilical vein endothelial cells (HUVECs). Moreover, U87 or U251 conditioned medium could upregulated PSMA expression and induce similar effects on phenotypes of HUVECs, all of which could be partially attenuated by 2-PMPA treatment. The mechanistic study revealed that PSMA might promote angiogenesis of GBM through interacting with Integrin β4 (ITGB4) and activating NF-κB signaling pathway. The in vivo growth of GBM could be alleviated by the treatment of 2-PMPA.ConclusionThis study identified PSMA as a critical regulator in angiogenesis and progression of GBM, which might be a promising therapeutic target for GBM treatment.

Author(s):  
Shuang-Shuang Dong ◽  
Dan-Dan Dong ◽  
Zhang-Fu Yang ◽  
Gui-Qi Zhu ◽  
Dong-Mei Gao ◽  
...  

BackgroundAngiogenesis is a crucial process in tumorigenesis and development. The role of exosomes derived from hepatocellular carcinoma (HCC) cells in angiogenesis has not been clearly elucidated.Methods and ResultsExosomes were isolated from HCC cell lines (HCCLM3, MHCC97L, and PLC/RFP/5) by ultracentrifugation and identified by nano transmission electron microscopy (TEM), NanoSight analysis and western blotting, respectively. In vitro and in vivo analyses showed that exosomes isolated from highly metastatic HCC cells enhanced the migration, invasion and tube formation of human umbilical vein endothelial cells (HUVECs) compared to exosomes derived from poorly metastatic HCC cells. In addition, microarray analysis of HCC-Exos was conducted to identify potential functional molecules, and miR-3682-3p expression was found to be significantly downregulated in exosomes isolated from highly metastatic HCC cells. By in vitro gain-of-function experiments, we found that HCC cells secreted exosomal miR-3682-3p, which negatively regulates angiopoietin-1 (ANGPT1), and this led to inhibition of RAS-MEK1/2-ERK1/2 signaling in endothelial cells and eventually impaired angiogenesis.ConclusionOur study elucidates that exosomal miR-3682-3p attenuates angiogenesis by targeting ANGPT1 through RAS-MEK1/2-ERK1/2 signaling and provides novel potential targets for liver cancer therapy.


2015 ◽  
Vol 35 (3) ◽  
pp. 875-884 ◽  
Author(s):  
Hongyuan Song ◽  
Dongyan Pan ◽  
Weifeng Sun ◽  
Cao Gu ◽  
Yuelu Zhang ◽  
...  

Background/Aims: Annexin II receptor (AXIIR) is able to mediate Annexin II signal and induce apoptosis, but its role in angiogenesis remains unclear. This study tries to investigate the role of AXIIR in angiogenesis and the plausible molecular mechanism. Methods/Results: RNA interference technology was used to silence AXIIR, and the subsequent effects in vitro and in vivo were evaluated thereafter. Our data indicated that human umbilical vein endothelial cells (HUVECs) expressed AXIIR and knockdown of AXIIR significantly inhibited HUVECs proliferation, adhesion, migration, and tube formation in vitro and suppressed angiogenesis in vivo. Furthermore, AXIIR siRNA induced cell arrest in the S/G2 phase while had no effect on cell apoptosis. We found that these subsequent effects might be via suppressing the expression of matrix metalloproteinase 2and matrix metalloproteinase 9. Conclusion: AXIIR participates in angiogenesis, and may be a potential therapeutic target for angiogenesis related diseases.


Cells ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 32 ◽  
Author(s):  
Shinichiro Nishimi ◽  
Takeo Isozaki ◽  
Kuninobu Wakabayashi ◽  
Hiroko Takeuchi ◽  
Tsuyoshi Kasama

A disintegrin and metalloprotease 15 (ADAM15) is involved in several malignancies. In this study, we investigated the role of ADAM15 in rheumatoid arthritis (RA) angiogenesis. Soluble ADAM15 (s-ADAM15) in serum from RA and normal (NL) subjects was measured using ELISA. To determine membrane-anchored ADAM15 (ADAM15) expression in RA synovial tissues, immunohistochemistry was performed. To examine the role of ADAM15 in angiogenesis, we performed in vitro Matrigel assays and monocyte adhesion assays using human umbilical vein endothelial cells (HUVECs) transfected with ADAM15 siRNA. Finally, to investigate whether angiogenic mediators were affected by ADAM15, cytokines in ADAM15 siRNA-transfected HUVEC-conditioned medium were measured. ADAM15 was significantly higher in RA serum than in NL serum. ADAM15 was also expressed on RAST endothelial cells. ADAM15 siRNA-treated HUVECs had decreased EC tube formation in response to RA synovial fluids compared with non-treated HUVECs. The adhesion index of ADAM15 siRNA-transfected HUVECs was significantly lower than the adhesion index of control siRNA-transfected HUVECs. ENA-78/CXCL5 and ICAM-1 were decreased in tumor necrosis factor (TNF)-α-stimulated ADAM15 siRNA-transfected HUVEC-conditioned medium compared with TNF-α-stimulated control siRNA-transfected HUVEC-conditioned medium. These data show that ADAM15 plays a role in RA angiogenesis, suggesting that ADAM15 might be a potential target in inflammatory diseases such as RA.


2016 ◽  
Vol 38 (2) ◽  
pp. 502-513 ◽  
Author(s):  
Fei Shi ◽  
Tian-Zhi Zhao ◽  
Yong-Chun Wang ◽  
Xin-Sheng Cao ◽  
Chang-Bin Yang ◽  
...  

Background/Aims: The potential role of caveolin-1 in modulating angiogenesis in microgravity environment is unexplored. Methods: Using simulated microgravity by clinostat, we measured the expressions and interactions of caveolin-1 and eNOS in human umbilical vein endothelial cells. Results: We found that decreased caveolin-1 expression is associated with increased expression and phosphorylation levels of eNOS in endothelial cells stimulated by microgravity, which causes a dissociation of eNOS from caveolin-1 complexes. As a result, microgravity induces cell migration and tube formation in endothelial cell in vitro that depends on the regulations of caveolin-1. Conclusion: Our study provides insight for the important endothelial functions in altered gravitational environments.


2021 ◽  
Vol 28 (2) ◽  
pp. 202-211
Author(s):  
Yuping Wang ◽  
Yang Gu ◽  
J. Steven Alexander ◽  
David F. Lewis

Increased neutrophil–endothelial binding and inflammatory responses are significant pathophysiological events in the maternal vascular system in preeclampsia, a hypertensive disorder in human pregnancy. Interleukin 6 (IL-6) and its soluble receptors (soluble IL-6R (sIL-6R) and soluble gp130 (sgp130)) are critical inflammatory mediators. During pregnancy, maternal IL-6 and sgp130 levels were increased, but sIL-6R levels were decreased, in women with preeclampsia compared to normotensive pregnant women. However, little is known about differences in IL-6, sIL-6R, and sgp130 production by neutrophils and endothelial cells between normal pregnancy and preeclampsia. To study this, we isolated neutrophils and cultured human umbilical vein endothelial cells (HUVECs) from normal and preeclamptic pregnancies. Production of IL-6, sIL-6R, and sgp130 was measured. The role of placental factor(s)-mediated neutrophil production of IL-6, sIL-6R, and sgp130 was also determined by pretreating neutrophils with placental conditioned medium generated from placental villous cultures. We found that IL-6 and sgp130 were mainly produced by endothelial cells, while sIL-6R was mainly produced by neutrophils. Endothelial cells from preeclampsia produced significantly more IL-6 and sgp130, and neutrophils from preeclampsia produced significantly less sIL-6R than normal pregnancy cells. Interestingly, production of IL-6, sIL-6R, and sgp130 were time-dependently increased when neutrophils and endothelial cells were co-cultured. We also found that neutrophils from normal pregnancies produced more IL-6, but less sIL-6R, after being primed by preeclamptic-placental conditioned medium. These results demonstrated that neutrophils and endothelial cells have different capacities in producing IL-6, sIL-6R, and sgp130 between normal pregnancy and preeclampsia. These results also provide evidence that the placenta plays a role in inducing neutrophil activation in preeclampsia.


Endocrinology ◽  
2010 ◽  
Vol 151 (6) ◽  
pp. 2567-2576 ◽  
Author(s):  
Naohito Aoki ◽  
Rumi Yokoyama ◽  
Noriyuki Asai ◽  
Makiko Ohki ◽  
Yuichi Ohki ◽  
...  

We previously reported that 3T3-L1 and rat primary adipocytes secreted microvesicles, known as adipocyte-derived microvesicles (ADMs). In the present study, we further characterized the 3T3-L1 ADMs and found that they exhibited angiogenic activity in vivo. Antibody arrays and gelatin zymography analyses revealed that several angiogenic and antiangiogenic proteins, including leptin, TNFα, acidic fibroblast growth factor (FGFa), interferon-γ, and matrix metalloprotease (MMP)-2 and MMP-9, were present in the ADMs. Gene expression of most of these angiogenic factors was induced in the adipose tissue of diet-induced obese mice. Furthermore, leptin, TNFα, and MMP-2 were up-regulated at the protein level in the adipocyte fractions prepared from epididymal adipose tissues of high-fat-diet-induced obese mice. ADMs induced cell migration and tube formation of human umbilical vein endothelial cells, which were partially suppressed by neutralizing antibodies to leptin, TNFα, or FGFa but not to interferon-γ. Supporting these data, a mixture of leptin, TNFα, and FGFa induced tube formation. ADMs also promoted cell invasion of human umbilical vein endothelial cells through Matrigel, which was suppressed by the addition of the MMP inhibitor 1,10′-phenanthroline and a neutralizing antibody to MMP-2 but not to MMP-9. These results suggest that ADMs are associated with multiple angiogenic factors and play a role in angiogenesis in adipose tissue.


Author(s):  
Yuanyuan Li ◽  
Ying Shen ◽  
Yudan Zheng ◽  
Shundong Ji ◽  
Mengru Wang ◽  
...  

We previously demonstrated the immunostimulatory efficacy of Pseudomonas aeruginosa flagellar hook protein FlgE on epithelial cells, presumably via ectopic ATP synthases or subunits ATP5B on cell membranes. Here, by using recombinant wild-type FlgE, mutant FlgE (FlgEM; bearing mutations on two postulated critical epitopes B and F), and a FlgE analog in pull-down assay, Western blotting, flow cytometry, and ELISA, actual bindings of FlgE proteins or epitope B/F peptides with ATP5B were all confirmed. Upon treatment with FlgE proteins, human umbilical vein endothelial cells (HUVECs) and SV40-immortalized murine vascular endothelial cells manifested decreased proliferation, migration, tube formation, and surface ATP production and increased apoptosis. FlgE proteins increased the permeability of HUVEC monolayers to soluble large molecules like dextran as well as to neutrophils. Immunofluorescence showed that FlgE induced clustering and conjugation of F-actin in HUVECs. In Balb/c-nude mice bearing transplanted solid tumors, FlgE proteins induced a microvascular hyperpermeability in pinna, lungs, tumor mass, and abdominal cavity. All effects observed in FlgE proteins were partially or completely impaired in FlgEM proteins or blocked by pretreatment with anti-ATP5B antibodies. Upon coculture of bacteria with HUVECs, FlgE was detectable in the membrane and cytosol of HUVECs. It was concluded that FlgE posed a pathogenic ligand of ectopic ATP5B that, upon FlgE–ATP5B coupling on endothelial cells, modulated properties and increased permeability of endothelial layers both in vitro and in vivo. The FlgE-ectopic ATP5B duo might contribute to the pathogenesis of disorders associated with bacterial infection or ectopic ATP5B-positive cells.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Weijin Zhang ◽  
Yaoyuan Zhang ◽  
Xiaohua Guo ◽  
Zhenhua Zeng ◽  
Jie Wu ◽  
...  

Sepsis is a threatening health problem and characterized by microvascular dysfunction. In this study, we verified that LPS caused the downregulation of Sirt1 and the hyperpermeability of endothelial cells. Inhibition of Sirt1 with ex527 or Sirt1 siRNA displayed a higher permeability, while activation of Sirt1 with SRT1720 reversed the LPS-induced hyperpermeability, formation of fiber stress, and disruption of VE-cadherin distribution. In pulmonary microvascular vein endothelial cells isolated from wild-type mice, Sirt1 was attenuated upon LPS, while Sirt1 was preserved in a receptor of advanced glycation end product-knockout mice. The RAGE antibody could also diminish the downregulation and ubiquitination of Sirt1 in LPS-exposed human umbilical vein endothelial cells. An LPS-induced decrease in Sirt1 activity was attenuated by the RAGE antibody and TLR4 inhibitor. In vivo study also demonstrated the attenuating role of Sirt1 and RAGE knockout in LPS-induced increases in dextran leakage of mesenteric venules. Furthermore, activation of Sirt1 prevented LPS-induced decreases in the activity and expression of superoxide dismutase 2, as well as the increases in NADPH oxidase 4 and reactive oxygen species, while inhibition of Sirt1 aggravated the SOD2 decline. It also demonstrated that Sirt1-deacetylated p53 is required for p53 inactivation, which reversed the downregulation of β-catenin caused by LPS.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shunli Pan ◽  
Xiaoxia Zhao ◽  
Chen Shao ◽  
Bingjie Fu ◽  
Yingying Huang ◽  
...  

AbstractCancer cells secrete abundant exosomes, and the secretion can be promoted by an increase of intracellular Ca2+. Stromal interaction molecule 1 (STIM1) plays a key role in shaping Ca2+ signals. MicroRNAs (miRNAs) have been reported to be potential therapeutic targets for many diseases, including breast cancer. Recently, we investigated the effect of exosomes from STIM1-knockout breast cancer MDA-MB-231 cells (Exo-STIM1-KO), and from SKF96365-treated MDA-MB-231 cells (Exo-SKF) on angiogenesis in human umbilical vein endothelial cells (HUVECs) and nude mice. The exosomes Exo-STIM1-KO and Exo-SKF inhibited tube formation by HUVECs remarkably. The miR-145 was increased in SKF96365 treated or STIM1-knockout MDA-MB-231 cells, Exo-SKF and Exo-STIM1-KO, and HUVECs treated with Exo-SKF or Exo-STIM1-KO. Moreover, the expressions of insulin receptor substrate 1 (IRS1), which is the target of miR-145, and the downstream proteins such as Akt/mammalian target of rapamycin (mTOR), Raf/extracellular signal regulated-protein kinase (ERK), and p38 were markedly inhibited in HUVECs treated with Exo-SKF or Exo-STIM1-KO. Matrigel plug assay in vivo showed that tumor angiogenesis was suppressed in Exo-STIM1-KO, but promoted when miR-145 antagomir was added. Taken together, our findings suggest that STIM1 promotes angiogenesis by reducing exosomal miR-145 in breast cancer MDA-MB-231 cells.


Blood ◽  
2008 ◽  
Vol 111 (7) ◽  
pp. 3498-3506 ◽  
Author(s):  
Graeme M. Birdsey ◽  
Nicola H. Dryden ◽  
Valerie Amsellem ◽  
Frank Gebhardt ◽  
Kapil Sahnan ◽  
...  

Abstract Tight regulation of the balance between apoptosis and survival is essential in angiogenesis. The ETS transcription factor Erg is required for endothelial tube formation in vitro. Inhibition of Erg expression in human umbilical vein endothelial cells (HUVECs), using antisense oligonucleotides, resulted in detachment of cell-cell contacts and increased cell death. Inhibition of Erg expression by antisense in HUVECs also lowered expression of the adhesion molecule vascular endothelial (VE)–cadherin, a key regulator of endothelial intercellular junctions and survival. Using chromatin immunoprecipitation, we showed that Erg binds to the VE-cadherin promoter. Furthermore, Erg was found to enhance VE-cadherin promoter activity in a transactivation assay. Apoptosis induced by inhibition of Erg was partly rescued by overexpression of VE-cadherin–GFP, suggesting that VE-cadherin is involved in the Erg-dependent survival signals. To show the role of Erg in angiogenesis in vivo, we used siRNA against Erg in a Matrigel plug model. Erg inhibition resulted in a significant decrease in vascularization, with increase in caspase-positive endothelial cells (ECs). These results identify a new pathway regulating angiogenesis and endothelial survival, via the transcription factor Erg and the adhesion molecule VE-cadherin.


Sign in / Sign up

Export Citation Format

Share Document