scholarly journals Biallelic Mutations in ACACA Cause a Disruption in Lipid Homeostasis That Is Associated With Global Developmental Delay, Microcephaly, and Dysmorphic Facial Features

Author(s):  
Xiaoting Lou ◽  
Xiyue Zhou ◽  
Haiyan Li ◽  
Xiangpeng Lu ◽  
Xinzhu Bao ◽  
...  

ObjectiveWe proposed that the deficit of ACC1 is the cause of patient symptoms including global developmental delay, microcephaly, hypotonia, and dysmorphic facial features. We evaluated the possible disease-causing role of the ACACA gene in developmental delay and investigated the pathogenesis of ACC1 deficiency.MethodsA patient who presented with global developmental delay with unknown cause was recruited. Detailed medical records were collected and reviewed. Whole exome sequencing found two variants of ACACA with unknown significance. ACC1 mRNA expression level, protein expression level, and enzyme activity level were detected in patient-derived cells. Lipidomic analysis, and in vitro functional studies including cell proliferation, apoptosis, and the migratory ability of patient-derived cells were evaluated to investigate the possible pathogenic mechanism of ACC1 deficiency. RNAi-induced ACC1 deficiency fibroblasts were established to assess the causative role of ACC1 deficit in cell migratory disability in patient-derived cells. Palmitate supplementation assays were performed to assess the effect of palmitic acid on ACC1 deficiency-induced cell motility deficit.ResultsThe patient presented with global developmental delay, microcephaly, hypotonia, and dysmorphic facial features. A decreased level of ACC1 and ACC1 enzyme activity were detected in patient-derived lymphocytes. Lipidomic profiles revealed a disruption in the lipid homeostasis of the patient-derived cell lines. In vitro functional studies revealed a deficit of cell motility in patient-derived cells and the phenotype was further recapitulated in ACC1-knockdown (KD) fibroblasts. The cell motility deficit in both patient-derived cells and ACC1-KD were attenuated by palmitate.ConclusionWe report an individual with biallelic mutations in ACACA, presenting global development delay. In vitro studies revealed a disruption of lipid homeostasis in patient-derived lymphocytes, further inducing the deficit of cell motility capacity and that the deficiency could be partly attenuated by palmitate.

2019 ◽  
Vol 30 (15) ◽  
pp. 1805-1816 ◽  
Author(s):  
Erin E. Dymek ◽  
Jianfeng Lin ◽  
Gang Fu ◽  
Mary E. Porter ◽  
Daniela Nicastro ◽  
...  

We previously demonstrated that PACRG plays a role in regulating dynein-driven microtubule sliding in motile cilia. To expand our understanding of the role of PACRG in ciliary assembly and motility, we used a combination of functional and structural studies, including newly identified Chlamydomonas pacrg mutants. Using cryo-electron tomography we show that PACRG and FAP20 form the inner junction between the A- and B-tubule along the length of all nine ciliary doublet microtubules. The lack of PACRG and FAP20 also results in reduced assembly of inner-arm dynein IDA b and the beak-MIP structures. In addition, our functional studies reveal that loss of PACRG and/or FAP20 causes severe cell motility defects and reduced in vitro microtubule sliding velocities. Interestingly, the addition of exogenous PACRG and/or FAP20 protein to isolated mutant axonemes restores microtubule sliding velocities, but not ciliary beating. Taken together, these studies show that PACRG and FAP20 comprise the inner junction bridge that serves as a hub for both directly modulating dynein-driven microtubule sliding, as well as for the assembly of additional ciliary components that play essential roles in generating coordinated ciliary beating.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Monika Oláhová ◽  
Bradley Peter ◽  
Zsolt Szilagyi ◽  
Hector Diaz-Maldonado ◽  
Meenakshi Singh ◽  
...  

AbstractWhile >300 disease-causing variants have been identified in the mitochondrial DNA (mtDNA) polymerase γ, no mitochondrial phenotypes have been associated with POLRMT, the RNA polymerase responsible for transcription of the mitochondrial genome. Here, we characterise the clinical and molecular nature of POLRMT variants in eight individuals from seven unrelated families. Patients present with global developmental delay, hypotonia, short stature, and speech/intellectual disability in childhood; one subject displayed an indolent progressive external ophthalmoplegia phenotype. Massive parallel sequencing of all subjects identifies recessive and dominant variants in the POLRMT gene. Patient fibroblasts have a defect in mitochondrial mRNA synthesis, but no mtDNA deletions or copy number abnormalities. The in vitro characterisation of the recombinant POLRMT mutants reveals variable, but deleterious effects on mitochondrial transcription. Together, our in vivo and in vitro functional studies of POLRMT variants establish defective mitochondrial transcription as an important disease mechanism.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria De Luca ◽  
Roberta Romano ◽  
Cecilia Bucci

AbstractV-ATPase is a large multi-subunit complex that regulates acidity of intracellular compartments and of extracellular environment. V-ATPase consists of several subunits that drive specific regulatory mechanisms. The V1G1 subunit, a component of the peripheral stalk of the pump, controls localization and activation of the pump on late endosomes and lysosomes by interacting with RILP and RAB7. Deregulation of some subunits of the pump has been related to tumor invasion and metastasis formation in breast cancer. We observed a decrease of V1G1 and RAB7 in highly invasive breast cancer cells, suggesting a key role of these proteins in controlling cancer progression. Moreover, in MDA-MB-231 cells, modulation of V1G1 affected cell migration and matrix metalloproteinase activation in vitro, processes important for tumor formation and dissemination. In these cells, characterized by high expression of EGFR, we demonstrated that V1G1 modulates EGFR stability and the EGFR downstream signaling pathways that control several factors required for cell motility, among which RAC1 and cofilin. In addition, we showed a key role of V1G1 in the biogenesis of endosomes and lysosomes. Altogether, our data describe a new molecular mechanism, controlled by V1G1, required for cell motility and that promotes breast cancer tumorigenesis.


2015 ◽  
Vol 52 (Suppl 1) ◽  
pp. A1.2-A1
Author(s):  
Lauren Chad ◽  
Brian HY Chung ◽  
Christian R Marshall ◽  
Daniele Merico ◽  
Riyana Babul-Hirji ◽  
...  

1980 ◽  
Vol 238 (5) ◽  
pp. G424-G428
Author(s):  
H. Schiffl ◽  
U. Binswanger

Calcium ATPase, an enzyme involved in intestinal calcium transport, was measured in homogenates of duodenal mucosal scrapings of normal and uremic rats. The effects of calcium deprivation and treatment with 1 alpha,25-dihydroxycholecalciferol [1,25-(OH)2D3] were investigated as well. Uremia decreased the enzyme activity and impaired the rise after calcium deprivation as observed in intact rats. The 1,25-(OH)2D3 treatment increased the enzyme activity in uremic animals and resulted in an identical response to calcium deprivation as observed in intact rats; parathyroidectomy abolished this effect. A striking correlation between everted duodenal gut sac calcium transport and calcium ATPase activity could be demonstrated for all groups of rats studied. It is concluded that the calcium ATPase activity is linked to the production of 1,25-(OH)2D3 as well as to an additional factor, probably parathyroid hormone. The close relationship between enzyme activity and in vitro calcium transport, even during constant physiological supplementation with 1,25-(OH)2D3, suggests an autonomous role of the calcium ATPase activity for mediation of calcium transport in the duodenum in addition to the well-known mechanisms related to vitamin D and its metabolites.


Author(s):  
C Gorodetsky ◽  
CF Morel ◽  
I Tein

Background: Children with biallelic mutations in TRNT1 have multi-organ involvement with congenital sideroblastic anemia, -B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD) as well as seizures, ataxia and sensorineural hearing loss. The TRNT1 gene encodes the CCA-adding enzyme essential for maturation of both nuclear and mitochondrial transfer RNAs accounting for phenotypic pleitropy. Neurodegenerative Leigh syndrome has not been previously reported. Methods:Case summary: A Portuguese boy presented with global developmental delay, 2 episodes of infantile Leigh encephalopathy at 8 mo and 4 yr responsive to high-dose steroids, slow neurodegeneration of cognitive, language and motor functions with optic atrophy, pigmentary retinopathy, spasticity, dystonia, and focal dyscognitive seizures, pancytopenia, transfusion dependent sideroblastic anemia, recurrent febrile infections (pulmonary, gastrointestinal), hypernatremia, with tracheostomy dependence at age 5 yr, malabsorption and TPN dependence at 9 yr, and survival to early adulthood. Neuroimaging showed symmetric hemorrhagic lesions in the thalamus, brain stem (periaqueductal grey) and cerebellum consistent with Leigh syndrome but no lactate peak on MRS. Results: Whole exome sequencing identified a homozygous missense pathogenic variant in TRNT1, c.668T>C (p.I223T) in the affected individual. Conclusions: This report expands the neurological phenotype of TRNT1 mutations and highlights the importance of considering this gene in the evaluation of Leigh syndrome.


2017 ◽  
Vol 43 (3) ◽  
pp. 1090-1099 ◽  
Author(s):  
Zhonghua Jiang ◽  
Tingting Yu ◽  
Zhining Fan ◽  
Hongmei Yang ◽  
Xin Lin

Background/Aims: Krüppel-like factor (KLF) 7 protein is a member of the KLF transcription factor family, which plays important roles in regulating the expression of genes involved in cell growth, proliferation, differentiation and metabolism. However, the role of KLF7 in gastric cancer (GC) is unknown. The aim of this study is to explore the role of KLF7 in GC and its correlation with clinicopathological characteristics and prognosis of GC patients. Methods: We first systematically evaluated dysregulation of the KLF family in The Cancer Genome Atlas (TCGA) GC database. Then, 252 patients who underwent surgery for GC were enrolled to validate the results from the TCGA. Functional studies were also used to explore the role of KLF7 in GC. Results: In the TCGA database, we found that KLF7 was an independent predictor for survival by both univariate and multivariate analysis (P<0.05). In a validation cohort, KLF7 expression was significantly increased in GC tissues compared with adjacent normal controls (P=0.013). High KLF7 expression correlated with inferior prognostic factors, such as T stage (P=0.022), N stage (P =0.005) and lymphovascular invasion (P=0.009). Furthermore, we observed a strong negative correlation between KLF7 expression and 5-year overall survival and disease-free survival in GC patients (P<0.05). Moreover, our in vitro studies showed a notable decrease in migration in KLF7 knockdown cells. Conclusion: KLF7 has an important role in GC progression, as it inhibits GC cell migration and may serve as a prognostic marker.


2020 ◽  
pp. jcs.248237
Author(s):  
Zhenguo Yang ◽  
Shuilong Wu ◽  
Federica Fontana ◽  
Yanyu Li ◽  
Wei Xiao ◽  
...  

Steinberg's differential adhesion hypothesis suggests that adhesive mechanisms are important for sorting of cells and tissues during morphogenesis (Steinberg, 2007). During zebrafish vasculogenesis, endothelial cells sort into arterial and venous vessel beds but it is unknown whether this involves adhesive mechanisms. Claudins are tight junction proteins regulating the permeability of epithelial and endothelial tissue barriers. Previously, the roles of Claudins during organ development have exclusively been related to their canonical functions in determining paracellular permeability. Here, we use atomic force microscopy to quantify Claudin-5-dependent adhesion and find that this strongly contributes to the adhesive forces between arterial endothelial cells. Based on genetic manipulations, we reveal a non-canonical role of Claudin-5a during zebrafish vasculogenesis, which involves the regulation of adhesive forces between adjacent dorsal aortic endothelial cells. In vitro and in vivo studies demonstrate that loss of Claudin-5 results in increased motility of dorsal aorta endothelial cells and in a failure of the dorsal aorta to lumenize. Our findings uncover a novel role of Claudin-5 in limiting arterial endothelial cell motility, which goes beyond its traditional sealing function during embryonic development.


2007 ◽  
Vol 176 (7) ◽  
pp. 1021-1033 ◽  
Author(s):  
Taeck J. Jeon ◽  
Dai-Jen Lee ◽  
Sylvain Merlot ◽  
Gerald Weeks ◽  
Richard A. Firtel

We have investigated the role of Rap1 in controlling chemotaxis and cell adhesion in Dictyostelium discoideum. Rap1 is activated rapidly in response to chemoattractant stimulation, and activated Rap1 is preferentially found at the leading edge of chemotaxing cells. Cells expressing constitutively active Rap1 are highly adhesive and exhibit strong chemotaxis defects, which are partially caused by an inability to spatially and temporally regulate myosin assembly and disassembly. We demonstrate that the kinase Phg2, a putative Rap1 effector, colocalizes with Rap1–guanosine triphosphate at the leading edge and is required in an in vitro assay for myosin II phosphorylation, which disassembles myosin II and facilitates filamentous actin–mediated leading edge protrusion. We suggest that Rap1/Phg2 plays a role in controlling leading edge myosin II disassembly while passively allowing myosin II assembly along the lateral sides and posterior of the cell.


2014 ◽  
Vol 3 (2) ◽  
pp. 67-74 ◽  
Author(s):  
Ingeborg Brønstad ◽  
Lars Breivik ◽  
Paal Methlie ◽  
Anette S B Wolff ◽  
Eirik Bratland ◽  
...  

In about 95% of cases, congenital adrenal hyperplasia (CAH) is caused by mutations in CYP21A2 gene encoding steroid 21-hydroxylase (21OH). Recently, we have reported four novel CYP21A2 variants in the Norwegian population of patients with CAH, of which p.L388R and p.E140K were associated with salt wasting (SW), p.P45L with simple virilising (SV) and p.V211M+p.V281L with SV to non-classical (NC) phenotypes. We aimed to characterise the novel variants functionally utilising a newly designed in vitro assay of 21OH enzyme activity and structural simulations and compare the results with clinical phenotypes. CYP21A2 mutations and variants were expressed in vitro. Enzyme activity was assayed by assessing the conversion of 17-hydroxyprogesterone to 11-deoxycortisol by liquid chromatography tandem mass spectroscopy. PyMOL 1.3 was used for structural simulations, and PolyPhen2 and PROVEAN for predicting the severity of the mutants. The CYP21A2 mutants, p.L388R and p.E140K, exhibited 1.1 and 11.3% of wt 21OH enzyme activity, respectively, in vitro. We could not detect any functional deficiency of the p.P45L variant in vitro; although prediction tools suggest p.P45L to be pathogenic. p.V211M displayed enzyme activity equivalent to the wt in vitro, which was supported by in silico analyses. We found good correlations between phenotype and the in vitro enzyme activities of the SW mutants, but not for the SV p.P45L variant. p.V211M might have a synergistic effect together with p.V281L, explaining a phenotype between SV and NC CAH.


Sign in / Sign up

Export Citation Format

Share Document