scholarly journals Excessive All-Trans Retinoic Acid Inhibits Cell Proliferation Through Upregulated MicroRNA-4680-3p in Cultured Human Palate Cells

Author(s):  
Hiroki Yoshioka ◽  
Sai Shankar Ramakrishnan ◽  
Junbo Shim ◽  
Akiko Suzuki ◽  
Junichi Iwata

Cleft palate is the second most common congenital birth defect, and both environmental and genetic factors are involved in the etiology of the disease. However, it remains largely unknown how environmental factors affect palate development. Our previous studies show that several microRNAs (miRs) suppress the expression of genes involved in cleft palate. Here we show that miR-4680-3p plays a crucial role in cleft palate pathogenesis. We found that all-trans retinoic acid (atRA) specifically induces miR-4680-3p in cultured human embryonic palatal mesenchymal (HEPM) cells. Overexpression of miR-4680-3p inhibited cell proliferation in a dose-dependent manner through the suppression of expression of ERBB2 and JADE1, which are known cleft palate-related genes. Importantly, a miR-4680-3p-specific inhibitor normalized cell proliferation and altered expression of ERBB2 and JADE1 in cells treated with atRA. Taken together, our results suggest that upregulation of miR-4680-3p induced by atRA may cause cleft palate through suppression of ERBB2 and JADE1. Thus, miRs may be potential targets for the prevention and diagnosis of cleft palate.

1998 ◽  
Vol 275 (6) ◽  
pp. F938-F945 ◽  
Author(s):  
Evelyne Moreau ◽  
José Vilar ◽  
Martine Lelièvre-Pégorier ◽  
Claudie Merlet-Bénichou ◽  
Thierry Gilbert

Vitamin A and its derivatives have been shown to promote kidney development in vitro in a dose-dependent fashion. To address the molecular mechanisms by which all- trans-retinoic acid (RA) may regulate the nephron mass, rat kidneys were removed on embryonic day 14( E14) and grown in organ culture under standard or RA-stimulated conditions. By using RT-PCR, we studied the expression of the glial cell line-derived neurotrophic factor (GDNF), its cell surface receptor-α (GDNFR-α), and the receptor tyrosine kinase c-ret, known to play a major role in renal organogenesis. Expression of GDNF and GDNFR-α transcripts was high at the time of explantation and remained unaffected in culture with or without RA. In contrast, c-ret mRNA level, which was low in E14 metanephros and dropped rapidly in vitro, was increased by RA in a dose-dependent manner. The same is true at the protein level. Exogenous GDNF barely promotes additional nephron formation in vitro. Thus the present data establish c-ret as a key target of retinoids during kidney organogenesis.


Development ◽  
1994 ◽  
Vol 120 (11) ◽  
pp. 3267-3274 ◽  
Author(s):  
J. Helms ◽  
C. Thaller ◽  
G. Eichele

Local application of all-trans-retinoic acid (RA) to the anterior margin of chick limb buds results in pattern duplications reminescent of those that develop after grafting cells from the zone of polarizing activity (ZPA). RA may act directly by conferring positional information to limb bud cells, or it may act indirectly by creating a polarizing region in the tissue distal to the RA source. Here we demonstrate that tissue distal to an RA-releasing bead acquires polarizing activity in a dose-dependent manner. Treatments with pharmacological (beads soaked in 330 micrograms/ml) and physiological (beads soaked in 10 micrograms/ml) doses of RA are equally capable of inducing digit pattern duplication. Additionally, both treatments induce sonic hedgehog (shh; also known as vertebrate hedgehog-1, vhh-1), a putative ZPA morphogen and Hoxd-11, a gene induced by the polarizing signal. However, tissue transplantation assays reveal that pharmacological, but not physiological, doses create a polarizing region. This differential response could be explained if physiological doses induced less shh than pharmacological doses. However, our in situ hybridization analyses demonstrate that both treatments result in similar amounts of mRNA encoding this candidate ZPA morphogen. We outline a model describing the apparently disparate effects of pharmacologic and physiological doses RA on limb bud tissue.


2013 ◽  
Vol 20 (10) ◽  
pp. 1642-1646 ◽  
Author(s):  
Tristan I. Evans ◽  
R. Keith Reeves

ABSTRACTTissue-directed trafficking of dendritic cells (DCs) as natural adjuvants and/or direct vaccine carriers is highly attractive for the next generation of vaccines and immunotherapeutics. Since these types of studies would undoubtedly be first conducted using nonhuman primate models, we evaluated the ability of all-trans-retinoic acid (ATRA) to induce gut-homing α4β7 expression on rhesus macaque plasmacytoid and myeloid DCs (pDCs and mDCs, respectively). Induction of α4β7 occurred in both a time-dependent and a dose-dependent manner with up to 8-fold increases for mDCs and 2-fold increases for pDCs compared to medium controls. ATRA treatment was also specific in inducing α4β7 expression, but not expression of another mucosal trafficking receptor, CCR9. Unexpectedly, upregulation of α4β7 was associated with a concomitant downregulation of CD62L, a marker of lymph node homing, indicating an overall shift in the trafficking repertoire. These same phenomena occurred with ATRA treatment of human and chimpanzee DCs, suggesting a conserved mechanism among primates. Collectively, these data serve as a first evaluation forex vivomodification of primate DC homing patterns that could later be used in reinfusion studies for the purposes of immunotherapeutics or mucosa-directed vaccines.


2006 ◽  
Vol 290 (3) ◽  
pp. L597-L606 ◽  
Author(s):  
Chiharu Tabata ◽  
Hajime Kubo ◽  
Rie Tabata ◽  
Manabu Wada ◽  
Keiichiro Sakuma ◽  
...  

Although high-dose thoracic radiotherapy is an effective strategy for some malignancies including lung cancers and malignant lymphomas, it often causes complications of radiation fibrosis. To study the mechanism initiating tissue fibrosis, we investigated irradiation-induced cytokine production from human lung fibroblastic cells and found that IL-6 production was stimulated by irradiation. IL-6 is an autocrine growth factor for human myeloma cells, and retinoic acid is reported to inhibit their growth. Thus we evaluated the effect of all- trans retinoic acid (ATRA) on cell proliferation of lung fibroblasts along with the cytokine/receptor system. Irradiation-dependent stimulation of IL-6 production was correlated with increased NF-κB activity, and ATRA reduced this effect. Irradiation also increased the levels of mRNA for IL-6R and gp130, which were blocked by coexisting ATRA. Furthermore, IL-6 stimulated cell proliferation in dose-dependent manner but was overcome by pharmacological concentration of ATRA. These effects of ATRA were inhibited by rottlerin, which suggests ATRA abolished irradiation-induced stimulation through a PKCδ-dependent pathway. Finally, we demonstrated that IL-6 transcripts in the lung were upregulated at 2 mo after irradiation, and the effect was inhibited by the intraperitoneal administration of ATRA. ATRA is expected to have an advantage for radiotherapy in its antitumor effects, as reported previously, and to prevent radiotherapy-induced pulmonary injury.


Author(s):  
Hiroki Yoshioka ◽  
Yurie Mikami ◽  
Sai Shankar Ramakrishnan ◽  
Akiko Suzuki ◽  
Junichi Iwata

Cleft lip with/without cleft palate (CL/P) is one of the most common congenital birth defects, showing the complexity of both genetic and environmental contributions [e.g., maternal exposure to alcohol, cigarette, and retinoic acid (RA)] in humans. Recent studies suggest that epigenetic factors, including microRNAs (miRs), are altered by various environmental factors. In this study, to investigate whether and how miRs are involved in cleft palate (CP) induced by excessive intake of all-trans RA (atRA), we evaluated top 10 candidate miRs, which were selected through our bioinformatic analyses, in mouse embryonic palatal mesenchymal (MEPM) cells as well as in mouse embryos treated with atRA. Among them, overexpression of miR-27a-3p, miR-27b-3p, and miR-124-3p resulted in the significant reduction of cell proliferation in MEPM cells through the downregulation of CP-associated genes. Notably, we found that excessive atRA upregulated the expression of miR-124-3p, but not of miR-27a-3p and miR-27b-3p, in both in vivo and in vitro. Importantly, treatment with a specific inhibitor for miR-124-3p restored decreased cell proliferation through the normalization of target gene expression in atRA-treated MEPM cells and atRA-exposed mouse embryos, resulting in the rescue of CP in mice. Taken together, our results indicate that atRA causes CP through the induction of miR-124-3p in mice.


1993 ◽  
Vol 295 (2) ◽  
pp. 343-346 ◽  
Author(s):  
C Carlberg ◽  
J H Saurat ◽  
G Siegenthaler

The pleiotropic activities of retinoids are mediated by two types of nuclear receptors, the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs). All-trans-retinoic acid (RA) transcriptionally activates RARs, but not RXRs, whereas its natural stereoisomer, 9-cis-RA, is the ligand for RXRs. Here, we demonstrate that 9-cis-RA did not transcriptionally activate RARs, whereas in the presence of all-trans-RA the transactivation of RARs was inhibited in a dose-dependent manner by 9-cis-RA. RAR homodimer complexes were destabilized in vitro in the presence of 9-cis-RA. This suggests that 9-cis-RA may be a natural antagonist of all-trans-RA for binding to RAR complexes. The levels of 9-cis-RA may determine by which pathway the transcription of retinoid-responsive genes is modulated.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Kimberly Mantzke Baker ◽  
Angela C. Bauer

The persistence of polychlorinated biphenyls (PCBs) in the environment is of considerable concern since they accumulate in human breast tissue and may stimulate the growth of estrogen-sensitive tumors. Studies have shown that EGCG from green tea can modify estrogenic activity and thus may act as a cancer chemopreventive agent. In the present study, we evaluated the individual and combined effects of PCB 102 and EGCG on cell proliferation using an estrogen-sensitive breast cancer cell line MCF-7/BOS. PCB 102 (1–10 μM) increased cell proliferation in a dose-dependent manner. Furthermore, the proliferative effects of PCB 102 were mediated by ERαand could be abrogated by the selective ERαantagonist MPP. EGCG (10–50 μM) caused a dose-dependent inhibition of PCB 102-induced cell proliferation, with nearly complete inhibition at 25 μM EGCG. The antiproliferative action of EGCG was mediated by ERβand could be blocked by the ERβ-specific inhibitor PHTPP. In conclusion, EGCG suppressed the proliferation-stimulating activity of the environmental estrogen PCB 102 which may be helpful in the chemoprevention of breast cancer.


2020 ◽  
Vol 63 (1) ◽  
Author(s):  
Yunjeong Gwon ◽  
Jisun Oh ◽  
Jong-Sang Kim

AbstractSulforaphane is a well-known phytochemical that stimulates nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant cellular response. In this study, we found that sulforaphane promoted cell proliferation in HCT116 human colon cancer cells expressing a normal p53 gene in a dose-dependent but biphasic manner. Since p53 has been reported to contribute to cell survival by regulating various metabolic pathways to adapt to mild stress, we further examined cellular responses in both p53-wild-type (WT) and p53-knockout (KO) HCT116 cells exposed to sulforaphane in vitro and in vivo. Results demonstrated that sulforaphane treatment activated Nrf2-mediated antioxidant enzymes in both p53-WT and p53-KO cells, decreased apoptotic protein expression in WT cells but increased in KO cells in a dose-dependent manner, and increased the expression of a mitochondrial biogenesis marker PGC1α in WT cells but decreased in KO cells. Moreover, a low dose of sulforaphane promoted tumor growth, upregulated the Nrf2 signaling pathway, and decreased apoptotic cell death in p53-WT HCT116 xenografts compared to that in p53-KO HCT116 xenografts in BALB/c nude mice. These findings suggest that sulforaphane can influence colon cancer cell proliferation and mitochondrial function through a crosstalk between the Nrf2 signaling pathway and p53 axis.


Sign in / Sign up

Export Citation Format

Share Document