Regulation of c-ret expression by retinoic acid in rat metanephros: implication in nephron mass control

1998 ◽  
Vol 275 (6) ◽  
pp. F938-F945 ◽  
Author(s):  
Evelyne Moreau ◽  
José Vilar ◽  
Martine Lelièvre-Pégorier ◽  
Claudie Merlet-Bénichou ◽  
Thierry Gilbert

Vitamin A and its derivatives have been shown to promote kidney development in vitro in a dose-dependent fashion. To address the molecular mechanisms by which all- trans-retinoic acid (RA) may regulate the nephron mass, rat kidneys were removed on embryonic day 14( E14) and grown in organ culture under standard or RA-stimulated conditions. By using RT-PCR, we studied the expression of the glial cell line-derived neurotrophic factor (GDNF), its cell surface receptor-α (GDNFR-α), and the receptor tyrosine kinase c-ret, known to play a major role in renal organogenesis. Expression of GDNF and GDNFR-α transcripts was high at the time of explantation and remained unaffected in culture with or without RA. In contrast, c-ret mRNA level, which was low in E14 metanephros and dropped rapidly in vitro, was increased by RA in a dose-dependent manner. The same is true at the protein level. Exogenous GDNF barely promotes additional nephron formation in vitro. Thus the present data establish c-ret as a key target of retinoids during kidney organogenesis.

1993 ◽  
Vol 295 (2) ◽  
pp. 343-346 ◽  
Author(s):  
C Carlberg ◽  
J H Saurat ◽  
G Siegenthaler

The pleiotropic activities of retinoids are mediated by two types of nuclear receptors, the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs). All-trans-retinoic acid (RA) transcriptionally activates RARs, but not RXRs, whereas its natural stereoisomer, 9-cis-RA, is the ligand for RXRs. Here, we demonstrate that 9-cis-RA did not transcriptionally activate RARs, whereas in the presence of all-trans-RA the transactivation of RARs was inhibited in a dose-dependent manner by 9-cis-RA. RAR homodimer complexes were destabilized in vitro in the presence of 9-cis-RA. This suggests that 9-cis-RA may be a natural antagonist of all-trans-RA for binding to RAR complexes. The levels of 9-cis-RA may determine by which pathway the transcription of retinoid-responsive genes is modulated.


Blood ◽  
1998 ◽  
Vol 91 (7) ◽  
pp. 2452-2458 ◽  
Author(s):  
Hiromichi Matsushita ◽  
Masahiro Kizaki ◽  
Hiroyuki Kobayashi ◽  
Hironori Ueno ◽  
Akihiro Muto ◽  
...  

Complete remission is achieved in a high proportion of patients with acute promyelocytic leukemia (APL) after all-trans retinoic acid (RA) treatment, but most patients relapse and develop RA-resistant APL. We have previously reported that both RA-resistant HL-60 (HL-60R) and APL cells express P-glycoprotein and MDR1 transcripts; and these cells differentiate to mature granulocytes after culture with RA and P-glycoprotein antagonist. Ribozymes have been shown to be able to intercept a target RNA by catalytic activity. To address the role of MDR1 in overcoming RA-resistance in APL cells, we investigated the biologic effects of ribozymes against the MDR1 transcript in HL-60R cells. These ribozymes efficiently cleaved MDR1 mRNA at a specific site in vitro. The 196 MDR1 ribozyme was cloned into an expression vector, and stably transfected (HL-60R/196Rz) cells were obtained. Expression of MDR1 transcripts was decreased in HL-60R/196Rz cells compared with parental HL-60R and empty vector-transfected (HL-60R/neo) cells. Interestingly, RA inhibited cellular proliferation and induced differentiation of HL-60R/196Rz cells in a dose-dependent manner, suggesting reversal of drug resistance in HL-60R cells by the MDR1 ribozyme. These data are direct evidence that P-glycoprotein/MDR1 is responsible in part for acquired resistance to RA in myeloid leukemic cells. The MDR1 ribozyme may be a useful tool for investigating the biology of retinoid resistance and may have therapeutic potential for patients with RA-resistant APL.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ana R. V. Pedro ◽  
Tânia Lima ◽  
Ricardo Fróis-Martins ◽  
Bárbara Leal ◽  
Isabel C. Ramos ◽  
...  

Yeast-derived products containing β-glucans have long been used as feed supplements in domesticated animals in an attempt to increase immunity. β-glucans are mainly recognized by the cell surface receptor CLEC7A, also designated Dectin-1. Although the immune mechanisms elicited through Dectin-1 activation have been studied in detail in mice and humans, they are poorly understood in other species. Here, we evaluated the response of bovine monocytes to soluble and particulate purified β-glucans, and also to Zymosan. Our results show that particulate, but not soluble β-glucans, can upregulate the surface expression of costimulatory molecules CD80 and CD86 on bovine monocytes. In addition, stimulated cells increased production of IL-8 and of TNF, IL1B, and IL6 mRNA expression, in a dose-dependent manner, which correlated positively with CLEC7A gene expression. Production of IL-8 and TNF expression decreased significantly after CLEC7A knockdown using two different pairs of siRNAs. Overall, we demonstrated here that bovine monocytes respond to particulate β-glucans, through Dectin-1, by increasing the expression of pro-inflammatory cytokines. Our data support further studies in cattle on the induction of trained immunity using dietary β-glucans.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Xiaolu Qu ◽  
Leyan Yan ◽  
Rihong Guo ◽  
Hui Li ◽  
Zhendan Shi

LPS is a major endotoxin produced by gram-negative bacteria, and exposure to it commonly occurs in animal husbandry. Previous studies have shown that LPS infection disturbs steroidogenesis, including progesterone production, and subsequently decreases animal reproductive performance. However, little information about the underlying mechanisms is available thus far. In the present study, an in vitro-luteinized porcine granulosa cell model was used to study the underlying molecular mechanisms of LPS treatment. We found that LPS significantly inhibits progesterone production and downregulates the expressions of progesterone synthesis-associated genes (StAR, CYP11A1, and 3β-HSD). Furthermore, the levels of ROS were significantly increased in an LPS dose-dependent manner. Moreover, transcriptional factors GATA4 and GATA6, but not NR5A1, were significantly downregulated. Elimination of LPS-stimulated ROS by melatonin or vitamin C could restore the expressions of GATA4, GATA6, and StAR. In parallel, StAR expression was also inhibited by the knockdown of GATA4 and GATA6. Based on these data, we conclude that LPS impairs StAR expression via the ROS-induced downregulation of GATA4 and GATA6. Collectively, these findings provide new insights into the understanding of reproductive losses in animals suffering from bacterial infection and LPS exposure.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 15153-15153 ◽  
Author(s):  
T. Sawada ◽  
T. Okada ◽  
K. Kubota

15153 Background: In the present study, anti-neoplastic effect of rapamycin against cholangiocarcinoma was studied in vitro. Methods: Expression of mTOR in 4 cholangiocarcinoma cell lines, TFK1, HuCCT1, NOZW, and OZ was evaluated by real-time PCR. Then, the four cholangiocarcinoma cell lines were cultured with rapamycin (0, 25, 50, 100, 200 nM), gemcitabine (0, 0.5, 1, 2 μM), or both, and anti-proliferative effect was evaluated by MTT assay. Results: All the four cholangiocarcinoma cell lines expressed endogenous mTOR- mRNA. Level of expression was the highest in HuCCT1 (65.8), and the lowest in TFK1 (17.6). Then, rapamycin significantly inhibited the growth of all the four cholangiocarcinoma cell lines, in dose-dependent manner. Gemcitabine inhibited the growth of NOZW (48.4%) and HuCCT1 (48.9%), but less efficiently in TFK1 (5.9%) and OZ (27.4%). Furthermore, synergistic anti-proliferative effect of rapamycin and gemcitabine was observed in TFK1 (39.1%), NOZW (38.9%), and OZ (47.1%), not in HuCCT1 (18.9%). Conclusion: Rapamycin effectively inhibited the growth of the cholangiocarcinoma cell lines, and synergistic effect with gemcitabine was observed in three of the four cell lines. No significant financial relationships to disclose.


Author(s):  
Hiroki Yoshioka ◽  
Sai Shankar Ramakrishnan ◽  
Junbo Shim ◽  
Akiko Suzuki ◽  
Junichi Iwata

Cleft palate is the second most common congenital birth defect, and both environmental and genetic factors are involved in the etiology of the disease. However, it remains largely unknown how environmental factors affect palate development. Our previous studies show that several microRNAs (miRs) suppress the expression of genes involved in cleft palate. Here we show that miR-4680-3p plays a crucial role in cleft palate pathogenesis. We found that all-trans retinoic acid (atRA) specifically induces miR-4680-3p in cultured human embryonic palatal mesenchymal (HEPM) cells. Overexpression of miR-4680-3p inhibited cell proliferation in a dose-dependent manner through the suppression of expression of ERBB2 and JADE1, which are known cleft palate-related genes. Importantly, a miR-4680-3p-specific inhibitor normalized cell proliferation and altered expression of ERBB2 and JADE1 in cells treated with atRA. Taken together, our results suggest that upregulation of miR-4680-3p induced by atRA may cause cleft palate through suppression of ERBB2 and JADE1. Thus, miRs may be potential targets for the prevention and diagnosis of cleft palate.


Development ◽  
1994 ◽  
Vol 120 (11) ◽  
pp. 3267-3274 ◽  
Author(s):  
J. Helms ◽  
C. Thaller ◽  
G. Eichele

Local application of all-trans-retinoic acid (RA) to the anterior margin of chick limb buds results in pattern duplications reminescent of those that develop after grafting cells from the zone of polarizing activity (ZPA). RA may act directly by conferring positional information to limb bud cells, or it may act indirectly by creating a polarizing region in the tissue distal to the RA source. Here we demonstrate that tissue distal to an RA-releasing bead acquires polarizing activity in a dose-dependent manner. Treatments with pharmacological (beads soaked in 330 micrograms/ml) and physiological (beads soaked in 10 micrograms/ml) doses of RA are equally capable of inducing digit pattern duplication. Additionally, both treatments induce sonic hedgehog (shh; also known as vertebrate hedgehog-1, vhh-1), a putative ZPA morphogen and Hoxd-11, a gene induced by the polarizing signal. However, tissue transplantation assays reveal that pharmacological, but not physiological, doses create a polarizing region. This differential response could be explained if physiological doses induced less shh than pharmacological doses. However, our in situ hybridization analyses demonstrate that both treatments result in similar amounts of mRNA encoding this candidate ZPA morphogen. We outline a model describing the apparently disparate effects of pharmacologic and physiological doses RA on limb bud tissue.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yong-Ge Guan ◽  
Jin-Bin Liao ◽  
Kun-Yin Li ◽  
Yu-Cui Li ◽  
Yang Song ◽  
...  

Background. Shaoyao-Gancao Decoction (SGD), a well-known traditional Chinese medicine prescription, has been widely used to treat adenomyosis, dysmenorrhea, abdominal pain, and inflammation in Asia. However, the mechanism underlying the effectiveness of SGD in the treatment of adenomyosis still remains elusive. The present study aimed to investigate the bioactivity of SGD and its underlying molecular mechanisms using cultured human adenomyosis-derived cells.Methods. Human adenomyosis-derived cells were treated with SGD and its major constituents (paeoniflorin and liquiritin)in vitro. Effects of SGD, paeoniflorin, and liquiritin on cell proliferation and apoptosis were examined by MTT assay and flow cytometry analyses. The effects of SGD, paeoniflorin, and liquiritin on the production of PGE2and PGF2αwere assayed using ELISA. ER-αand OTR mRNA expression levels were also evaluated by real-time qRT-PCR.Results. SGD, paeoniflorin, and liquiritin inhibited proliferation and induced apoptosis of human adenomyosis-derived cells in a dose-dependent manner. SGD and paeoniflorin significantly reduced the PGE2and PGF2αproduction. Furthermore, they remarkably decreased the mRNA levels of ER-αand OTR.Conclusions. The results of this study provide possible mechanisms for the bioactivity of SGD for treating adenomyosis and contribute to the ethnopharmacological knowledge about this prescription.


2013 ◽  
Vol 20 (10) ◽  
pp. 1642-1646 ◽  
Author(s):  
Tristan I. Evans ◽  
R. Keith Reeves

ABSTRACTTissue-directed trafficking of dendritic cells (DCs) as natural adjuvants and/or direct vaccine carriers is highly attractive for the next generation of vaccines and immunotherapeutics. Since these types of studies would undoubtedly be first conducted using nonhuman primate models, we evaluated the ability of all-trans-retinoic acid (ATRA) to induce gut-homing α4β7 expression on rhesus macaque plasmacytoid and myeloid DCs (pDCs and mDCs, respectively). Induction of α4β7 occurred in both a time-dependent and a dose-dependent manner with up to 8-fold increases for mDCs and 2-fold increases for pDCs compared to medium controls. ATRA treatment was also specific in inducing α4β7 expression, but not expression of another mucosal trafficking receptor, CCR9. Unexpectedly, upregulation of α4β7 was associated with a concomitant downregulation of CD62L, a marker of lymph node homing, indicating an overall shift in the trafficking repertoire. These same phenomena occurred with ATRA treatment of human and chimpanzee DCs, suggesting a conserved mechanism among primates. Collectively, these data serve as a first evaluation forex vivomodification of primate DC homing patterns that could later be used in reinfusion studies for the purposes of immunotherapeutics or mucosa-directed vaccines.


Sign in / Sign up

Export Citation Format

Share Document